Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Electrocatalytic properties of doped nickel boride based electrodes for the hydrogen evolution reaction

Abstract

Amorphous nickel boride electrodes doped by small amounts of Rh, Ru, Co, Cr, Zn or Pt were studied for the hydrogen evolution reaction (HER) in 1 M NaOH solution at 70 °C. Steady-state galvanostatic measurements, a.c. impedance spectroscopy, X-ray diffraction and scanning electron microscopy were used. The properties of the pressed electrodes and the kinetic parameters of the HER were determined. The constant phase element model adequately describes the a.c. behaviour of these electrodes. It was found that the HER proceeds through the Volmer-Heyrovsky mechanism. An increase in catalytic properties was observed for materials doped with Rh, Ru and Co.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    H. Wendt and G. Imarisio, J. Appl. Electrochem. 18 (1988) 1.

  2. [2]

    S. Trasatti in ‘Advances in Electrochemical Science and Engineering’, Vol. 2 (edited by H. Gerischer and W. Tobias eds), VCH, New York (1992) p. 1.

  3. [3]

    J. J. Gilman, Science 208 (1980) 856.

  4. [4]

    D. Turnbull, Metall. Transact. 12B (1980) 217.

  5. [5]

    W. E. Brower Jr., S. Matyjaszczyk, T. L. Pettit and G. V. Smith, Nature 301 (1983) 497.

  6. [6]

    C. Yoon and D. L. Cocke, J. Non-Cryst. Solids 79 (1986) 217.

  7. [7]

    D. L. Cocke, E. D. Johnson and R. P. Merril, Catal. Rev. Sci. Eng. 26 (1984) 163.

  8. [8]

    K. Hashimoto, ‘Passivity of Metals and Semiconductors’, Proc. 5th Int. Symp. (1983) 235.

  9. [9]

    M. D. Archer, C. C. Corke and B. H. Harji, Electrochim. Acta 32 (1987) 13.

  10. [10]

    G. Kreysa and B. Håkansson, J. Electroanal. Chem. 201 (1986) 61.

  11. [11]

    G. Kreysa, J. Gomez, A. Baro and A. J. Arvia, 0 265 (1989) 67.

  12. [12]

    H. Alemu and K. Jüttner, Electrochim. Acta 33 (1988) 1101.

  13. [13]

    K. Lian, D. W. Kirk and S. J. Thorpe, 0 36 (1991) 537.

  14. [14]

    , 0 37 (1992) 169.

  15. [15]

    , 0 37 (1992) 2029.

  16. [16]

    N. C. Grant and M. D. Archer, J. Electrochem. Soc. 131 (1984) 997.

  17. [17]

    K. Seto, J. Noël, J. Lipkowski, Z. Altounian and R. Reeves, 0 136 (1989) 1910.

  18. [18]

    G. Tremiliosi-Filho, E. R. Gonzalez, S. Srinivasan and A. J. Appleby, J. Electroanal. Chem. 331 (1992) 751.

  19. [19]

    K. Machida, M. Enyo, K. Kai and K. Suzuki, J. Less-Common Met. 100 (1984) 373.

  20. [20]

    K. Machida and M. Enyo, Bull. Chem. Soc. Japan 58 (1985) 2043.

  21. [21]

    M. Enyo, T. Yamazaki, K. Kai and K. Suzuki, Electrochim. Acta 28 (1983) 1573.

  22. [22]

    K. Machida, M. Enyo, Y. Toyoshima, K. Miyahara, K. Kai and K. Suzuki, Bull. Chem. Soc. Japan 56 (1983) 3393.

  23. [23]

    B. V. Tilak, A. C. Ramamurthy and B. E. Conway, Proc. Indian. Acad. Sci. (Chem. Sci.) 97 (1986) 359.

  24. [24]

    M. Naka, K. Hashimoto, T. Masumoto and I. Okamoto, Proc. 4th Int. Conf. on Rapidly Quenched Metals (edited by T. Masumoto and K. Suzuki eds), Japan Institute of Metals, Sendai (1982) 1431.

  25. [25]

    R. Paul, P. Buisson and N. Joseph, Ind. Eng. Chem. 44 (1952) 1007.

  26. [26]

    D. Mears and M. Boudart, AIChE J. 12 (1966) 312.

  27. [27]

    Ch. Brown, J. Org. Chem. 35 (1970) 1900.

  28. [28]

    F. Nozaki and R. Adachi, J. Catal. 40 (1975) 166.

  29. [29]

    R. C. Wade, D. G. Holar, A. N. Hughes and B. C. Hui, Catal. Rev. 14 (1976) 211.

  30. [30]

    J. van Vonterghem, S. Morupm, Ch. Koch, S. Charles and Swells, Nature 322 (1986) 622.

  31. [31]

    J. Saida, A. Inoue and T. Masumoto, Metal. Trans. 22A (1991) 2125.

  32. [32]

    J. Saida, A. Inoue and T. Masumoto, Mater. Sci. A133 (1991) 771.

  33. [33]

    S. Yoshida, H. Yamashita, T. Funabiki and T. Yonezawa, J. Chem. Soc., Chem. Commun. (1982) 964.

  34. [34]

    P. Los and A. Lasia, J. Electroanal. Chem. 333 (1992) 115.

  35. [35]

    H. Dumont, P. K. Wrona, J. M. Lalancette, H. Ménard and L. Brossard, J. Appl. Electrochem. 22 (1992) 1049.

  36. [36]

    J. J. Borodzinski and A. Lasia, Int. J. Hydrogen Energy 18 (1993) 985.

  37. [37]

    Y. Choquette, L. Brossard, A. Lasia and H. Ménard, Electrochim. Acta 35 (1990) 1251.

  38. [38]

    H. Dumont, P. Los, L. Brossard, A. Lasia and H. Ménard, J. Electrochem. Soc. 139 (1992) 2143.

  39. [39]

    , J. Appl. Electrochem. 23 (1993) 684.

  40. [40]

    J. J. Borodziński and A. Lasia, unpublished results (1993).

  41. [41]

    J. Divisek, H. Schmitz and J. Balej,J. Appl. Electrochem. 19 (1980) 519.

  42. [42]

    A. Lasia and A. Rami, J. Electroanal. Chem. 294 (1990) 123.

  43. [43]

    P. Wrona, A. Lasia, M. Lessard and H. Ménard, Electrochim. Acta 37 (1992) 1283.

  44. [44]

    J. R. Macdonald, J. Schoonman and A. P. Lehner, J. Electroanal. Chem. 131 (1982) 77.

  45. [45]

    G. J. Brug, A. L. G. van der Eeden, M. Sluyters-Rehbach and J. H. Sluyters, 0 176 (1984) 275.

  46. [46]

    L. Nyikos and T. Pajkossy, Electrochim. Acta 30 (1985) 1533.

  47. [47]

    P. Los, A. Lasia, L. Brossard and H. Ménard, J. Electroanal. Chem. 360 (1993) 101.

  48. [48]

    L. Chen and A. Lasia, J. Electrochem. Soc. 139 (1992) 3214.

  49. [49]

    L. Chen and A. Lasia, 0 140 (1993) 2464.

  50. [50]

    H. Keiser, K. D. Beccu and M. A. Gutjahr, Electrochim. Acta 21 (1976) 539.

  51. [51]

    A. Lasia and A. Rami, J. Electroanal. Chem. 294 (1990) 123.

  52. [52]

    S. Trassati and O. A. Petrii, Pure Appl. Chem. 63 (1991) 711.

  53. [53]

    A. Lasia, Int. J. Hydrogen Energy 18 (1993) 557.

  54. [54]

    Y. Choquette, A. Lasia, L. Brossard and H. Ménard, J. Electrochem. Soc. 137 (1990) 1723.

  55. [55]

    L. Chen and A. Lasia, 0 138 (1991) 3321.

  56. [56]

    I. Dragieva, M. Slavcheva and D. Buchkov, J. Less-Common Met. 117 (1986) 317.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Borodzínski, J.J., Lasia, A. Electrocatalytic properties of doped nickel boride based electrodes for the hydrogen evolution reaction. J Appl Electrochem 24, 1267–1275 (1994). https://doi.org/10.1007/BF00249892

Download citation

Keywords

  • Scanning Electron Microscopy
  • Nickel
  • Kinetic Parameter
  • Element Model
  • Impedance Spectroscopy