Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On stationary solutions of the Navier-Stokes equations as limits of nonstationary solutions

  • 148 Accesses

  • 38 Citations

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Ladyzhenskaya, O.A., The Mathematical Theory of Viscous Incompressible Flow. New York: Gordon and Breach 1963.

  2. 2.

    Finn, R., On the exterior stationary problem for the Navier-Stokes equations, and associated perturbation problems. Arch. Rational Mech. Anal. 19, 363–406 (1965).

  3. 3.

    Finn, R., Stationary solutions of the Navier-Stokes equations. Proc. Symp. Appl. Math. 19, Amer. Math. Soc. (1965).

  4. 4.

    Finn, R., On steady-state solutions of the Navier-Stokes partial differential equations. Arch. Rational Mech. Anal. 3, 381–396 (1959).

  5. 5.

    Finn, R., On the steady-state solutions of the Navier-Stokes equations, III. Acta Math. 105, 197–244 (1961).

  6. 6.

    Leray, J., Étude de diverses équations intégrales non linéaires et de quelques problèmes que pose l'Hydrodynamique. J. Math. Pures Appl. 9, 1–82 (1933); Les problèmes non linéaires, Enseignement Math. 35, 139–151 (1936).

  7. 7.

    Smith, D. R., Estimates at infinity for stationary solutions of the Navier-Stokes equations in two dimensions. Arch. Rational Mech. Anal. 20, 341–372 (1965).

  8. 8.

    Finn, R., & D.R. Smith, On the stationary solutions of the Navier-Stokes equations in two dimensions. Arch. Rational Mech. Anal. 25, 26–39 (1967).

  9. 9.

    Kiselev, A.A., & O.A. Ladyzhenskaya, On the existence and uniqueness of the solution of the nonstationary problem for a viscous incompressible fluid. Izv. Akad. Nauk SSSR 21, 655–680 (1957).

  10. 10.

    Serrin, J., On the interior regularity of weak solutions of the Navier-Stokes equations. Arch. Rational Mech. Anal. 9, 187–195 (1962).

  11. 11.

    Hopf, E., Über die Anfangswertaufgabe für die hydrodynamischen Grundgleichungen. Math. Nachr. 4, 213–231 (1951).

  12. 12.

    Agmon, S., Lectures on Elliptic Boundary Value Problems. Princeton, N.J.: Van Nostrand 1965.

Download references

Author information

Additional information

Communicated by J. L. Lions

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Heywood, J.G. On stationary solutions of the Navier-Stokes equations as limits of nonstationary solutions. Arch. Rational Mech. Anal. 37, 48–60 (1970). https://doi.org/10.1007/BF00249501

Download citation

Keywords

  • Neural Network
  • Complex System
  • Nonlinear Dynamics
  • Stationary Solution
  • Electromagnetism