Archives of Microbiology

, Volume 156, Issue 3, pp 213–217 | Cite as

Metabolism of 2-hydroxyphenylglyoxylate by Moraxella sp. strain VS1

  • Verona Schmidt
  • Rolf-Michael Wittich
  • Peter Fortnagel
Original Papers


A bacterium, designated as Moraxella sp., was enriched with 2-hydroxyphenylglyoxylate (2HPGA) as sole source of carbon and energy. Identified metabolites and enzyme activities determined with whole cells and extracts indicated that 2HPGA was degraded by an inducible sequence of enzymes via salicylaldehyde, salicylate, and gentisate; only minute amounts of salicylate were converted to catechol. Further evidence was obtained that permeases were necessary for the uptake of most aromatic compounds utilized for growth. For the direct determination of 2HPGA decarboxylase activity, an enzyme assay involving high-performance liquid chromatography for quantitation of the substrate was developped to study the initial step of the degradative pathway.

Key words

2-Hydroxyphenylglyoxylate Degradation Gentisate pathway Moraxella sp. VS1 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adriaens P, Kohler H-P, Kohler-Staub D, Focht DD (1989) Bacterial dehalogenation of chlorobenzoates and coculture biodegradation of 4,4′-dichlorobiphenyl. Appl Environ Microbiol 55:887–892PubMedPubMedCentralGoogle Scholar
  2. Bovre K (1984) Moraxella. In: Krieg NR, Holt JG (eds) Bergey's manual of systematic bacteriology, vol. 1. Williams and Wilkins, Baltimore London, pp 296–303Google Scholar
  3. Chen YP, Glenn AR, Dilworth MJ (1984) Uptake and oxidation of aromatic substrates by Rhizobium leguminosarum MNF 3841 and Rhizobium trifolii TA1. FEMS Microbiol Lett 21:201–205CrossRefGoogle Scholar
  4. Chen YP, Dilworth MJ, Glenn AR (1989) Degradation of mandelate and 4-hydroxymandelate by Rhizobium leguminosarum biovar trifolii TA1. Arch Microbiol 151:520–523CrossRefGoogle Scholar
  5. Dorn E, Hellwig M, Reineke W, Knackmuss H-J (1974) Isolation and characterization of a 3-chlorobenzoate degrading Pseudomonad. Arch Microbiol 99:61–70CrossRefGoogle Scholar
  6. Fewson CA (1967) The growth and metabolic versatility of the gram-negative bacterium NCIB 8250 (‘Vibrio 01’). J Gen Microbiol 46:255–266CrossRefGoogle Scholar
  7. Fewson CA (1988) Microbial metabolism of mandelate: a microcosm of diversity. FEMS Microbiol Rev 54:85–110CrossRefGoogle Scholar
  8. Fortnagel P, Harms H, Wittich R-M, Krohn S, Mayer H, Sinnwell V, Wilkes H, Francke W (1990) Metabolism of dibenzofuran by Pseudomonas sp. strain HH69 and the mixed culture HH27. Appl Environ Microbiol 56:1148–1156PubMedPubMedCentralGoogle Scholar
  9. Howe R, Rao BS, Heynecker G (1967) 2,3-Dihydro-2-hydroxy-benzo(b)furan-3-one, the cyclic hemiacetal of 2-hydroxyphenylglyoxal. J Chem Soc 1967:2510–2514Google Scholar
  10. Kawasaki H, Tone N, Tonomura K (1981) Plasmid-determined dehalogenation of haloacetate in Moraxella species. Agric Biol Chem 45:29–34Google Scholar
  11. Kennedy SIT, Fewson CA (1968a) Enzymes of the mandelate pathway in bacterium NCIB 8250. Biochem J 107:497–506CrossRefGoogle Scholar
  12. Kennedy SIT, Fewson CA (1968b) Metabolism of mandelate and related compounds by bacterium NCIB 8250. J Gen Microbiol 53:259–273CrossRefGoogle Scholar
  13. Spain JC, Wyss O, Gibson DT (1979) Enzymatic oxidation of p-nitrophenol. Biochem Biophys Res Commun 88:634–641CrossRefGoogle Scholar
  14. Sterjiades R, Pelmont J (1989) Occurence of two different forms of protocatechuate 3,4-dioxygenase in a Moraxella sp. Appl Environ Microbiol 55:340–347PubMedPubMedCentralGoogle Scholar
  15. Williams JR, Evans WC (1975) The metabolism of benzoate by Moraxella sp. through anaerobic nitrate respiration. Biochem J 148:1–10CrossRefGoogle Scholar
  16. Wittich R-M, Rast HG, Knackmuss H-J (1988) Degradation of naphthalene-1,6-disulfonic acid by a Moraxella sp. Appl Environ Microbiol 54:1842–1847PubMedPubMedCentralGoogle Scholar
  17. Wittich R-M, Schmidt S, Fortnagel P (1990) Bacterial degradation of 3- and 4-carboxybiphenyl ether by Pseudomonas sp. NSS2. FEMS Microbiol Lett 67:157–160CrossRefGoogle Scholar
  18. Yamamoto S, Katagiri M, Maeno H, Hayaishi O (1965) Salicylate hydroxylase, a monooxygenase requiring flavin adenine dinucleotide. I. Purification and properties. J Biol Chem 240:3408–3413PubMedGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Verona Schmidt
    • 1
  • Rolf-Michael Wittich
    • 1
  • Peter Fortnagel
    • 1
  1. 1.Institut für Allgemeine Botanik, Abteilung für MikrobiologieUniversität HamburgHamburg 52Germany

Personalised recommendations