Advertisement

Archives of Microbiology

, Volume 156, Issue 3, pp 167–175 | Cite as

The structure of the lipid A component of Sphaerotilus natans

  • Hussein Masoud
  • Teresa Urbanik-Sypniewska
  • Buko Lindner
  • Jürgen Weckesser
  • Hubert Mayer
Original Papers

Abstract

The lipopolysaccharide of Sphaerotilus natans afforded a ladder-like pattern of bands in sodium deoxycholate-polyacrylamide gel electrophoresis, indicating the presence of a S-form lipopolysaccharide. The chemical analysis showed neutral sugars (rhamnose, glucose, l-glycero-d-manno-heptose), 3-deoxy-octulosonic acid (Kdo), amino compounds (glucosamine, glucosamine phosphate, ethanolamine and ethanolamine phosphate), and phosphorus. The lipid A fraction contained saturated and unsaturated capric, lauric, and myristic acids, and 3-hydroxy capric acid (3-OH-10:0). Its chemical structure was consisting of a glucosamine disaccharide, glycosidically substituted by a phosphomonoester, and substituted at C-4′ by a pyrophosphodiester esterified with ethanolamine. The amino groups of both glucosamines are acylated by 3-hydroxy capric acids and these in turn are substituted by saturated and unsaturated capric, lauric, and myristic acids. Hydroxyl groups of the backbone disaccharide at C-3 and C-3′ were also esterified by 3-hydroxy capric acid, those at C-4 and C-6 were unsubstituted. The latter provides the attachment site for Kdo.

Key words

Sphaerotilus natans Lipopolysaccharide Lipid A Laser desorption mass spectrometry DOC-PAGE 3-Hydroxycapric acid Proteobacteria 

Abbreviations

Kdo

3-deoxy-d-manno-octulosonic acid

3-OH-10:0

3-hydroxy capric acid

DOC-PAGE

deoxycholate-polyacrylamide gel electrophoresis

GC-MS

gas chromatography/mass spectrometry

LD-MS

laser desorption mass spectrometry

LPS

lipopolysaccharide

PS

polysaccharide

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Batley M, Packer NH, Redmond JW (1985) Analytical studies of lipopolysaccharide and its derivatives from Salmonella minnesota R595 I. Phosphorus magnetic resonance spectra. Biochim Biophys Acta 821:179–194CrossRefGoogle Scholar
  2. Bhat RU, Kontrohr T, Mayer H (1987) Structure of Shigella sonnei lipid A. FEMS Microbiol Lett 40:189–192CrossRefGoogle Scholar
  3. Bochner BR, Maron DM, Ames BN (1981) Detection of phosphate esters on chromatograms: an improved reagent. Anal Biochem 117:81–83CrossRefGoogle Scholar
  4. Brade H, Brade L, Rietschel ETh (1988) Structure-activity relationships of bacterial lipopolysaccharides (Endotoxins). Current and future aspects. Zentralbl Bacteriol Mikrobiol Hyg [A] 268:151–179Google Scholar
  5. Cotter RJ, Honovich J, Qureshi N, Takayama K (1987) Structural determination of lipid a from Gram-negative bacteria using laser desorption mass spectrometry. Biomed Environ Mass Spectrom 14:591–598CrossRefGoogle Scholar
  6. Galanos C, Lüderitz O (1975) Electrodialysis of lipopolysaccharides and their conversion to uniform salt form. Eur J Biochem 54:603–610CrossRefGoogle Scholar
  7. Galanos C, Rietschel ETh, Lüderitz O, Westphal O, Kim YB, Watson DW (1972) Biological activities of lipid A complexed with bovine-serum albumin. Eur J Biochem 31:230–233CrossRefGoogle Scholar
  8. Galanos C, Roppel J, Weckesser J, Rietschel ETh, Mayer H (1977) Biological activities of lipopolysaccharides and lipid A from Rhodospirillaceae. Infect Immun 16:407–412PubMedPubMedCentralGoogle Scholar
  9. Galanos C, Freudenberg MA, Reutter W (1979) Galactosamine-induced sensitization to the lethal effects of endotoxin. Proc Natl Acad Sci USA 76:5939–5943CrossRefGoogle Scholar
  10. Hakomori SI (1964) A rapid permethylation of glycolipid and polysaccharide catalyzed by methylsulfinyl carbanion in dimethylsulfoxide. J Biochem 55:205–208PubMedGoogle Scholar
  11. Hase S, Rietschel ETh (1976) Isolation and analysis of the lipid backbone: lipid A structure of lipopolysaccharides from various bacterial groups. Eur J Biochem 63:101–107CrossRefGoogle Scholar
  12. Jensen M, Borowiak D, Paulsen H, Rietschel ETh (1979) Analysis of permethylated glucosaminyl-glucosaminitol disaccharides by combined gas-liquid chromatography mass spectrometry. Biomed Mass Spectrom 6:559–565CrossRefGoogle Scholar
  13. Jiao B (1988) Fractionation of smooth form lipopolysaccharide (Endotoxin): Chemical and biological characterization of the fraction and their lipid A. Doctoral thesis, Univ Freiburg, FRGGoogle Scholar
  14. Keleti G, Lederer WH (1974) Handbook of micromethods for the biological science. Van Nostrand Reinhold, New York Cincinati Toronto London MelbourneGoogle Scholar
  15. Komuro T, Galanos C (1988) Analysis of Salmonella lipopolysaccharides by sodium deoxycholate-polyacrylamide gel electrophoresis. J Chromatogr 450:381–387CrossRefGoogle Scholar
  16. Krasikova IN, Grobach VI, Isakov VV, Soloveva TF, Ovodov YS (1982) The application of 13C-NMR spectroscopy to study lipid A from Yersinia pseudotuberculosis lipopolysaccharide. Eur J Biochem 126:349–351CrossRefGoogle Scholar
  17. Krauss JH, Weckesser J, Mayer H (1988) Electrophoretic analysis of lipopolysaccharides of purple nonsulfur bacteria. Int J Syst Bacteriol 38:157–163CrossRefGoogle Scholar
  18. Kuhn HM (1981) Immunchemische Untersuchungen am Enterobacterial Common Antigen (ECA). Doctoral thesis, Univ Freiburg, FRGGoogle Scholar
  19. Lindner B, Seydel U (1985) Laser desorption mass spectrometry of nonvolatiles under shock wave conditions. Anal Chem 57:895–899CrossRefGoogle Scholar
  20. Lindner B, Zähringer U, Rietschel ETh, Seydel U (1990) Structural elucidation of lipopolysaccharides and their lipid A component: application of soft ionization mass spectrometry. In: Cox A, Morgan SL, Larsson L, Odham G (eds) Analytical microbiology methods. Plenum Press, New York, pp 149–160CrossRefGoogle Scholar
  21. Lowry OH, Roberts NR, Leiner KY, Wu M, Farr L (1954) The quantitative histochemistry of brain. I. Chemical methods. J Biol Chem 207:1–14PubMedGoogle Scholar
  22. Lüderitz O, Freudenberg MA, Galanos C, Lehmann V, Rietschel ETh, Shaw DH (1982) Lipopolysaccharides of Gram-negative bacteria. Curr Top Membr Transp 17:79–151CrossRefGoogle Scholar
  23. Lüderitz O, Galanos C, Rietschel RTh, Westphal O (1986) Lipid A: relationships of chemical structure and biological activity. In: Szentivany A, Friedman H (eds) Immunology and immunopharmacology of bacterial endotoxins. Plenum Publishing, New York, pp 65–74CrossRefGoogle Scholar
  24. Mayer H, Tharanathan RW, Weckesser J (1985) Analysis of lipopolysacharides of Gram-negative bacteria. Methods Microbiol 18:157–207CrossRefGoogle Scholar
  25. Mayer H, Masoud H, Urbanik-Sypniewska T, Weckesser J (1989a) Lipid A composition and phylogeny of Gram-negative bacteria. Bull JFCC 5:19–25Google Scholar
  26. Mayer H, Bhat UR, Masoud H, Radziejewska-Lebrecht J, Widemann C, Krauss JH (1989b) Bacterial lipopolysaccharides. Pure Appl Chem 61:1271–1282CrossRefGoogle Scholar
  27. Mayer H, Krauss JH, Yokota A, Weckesser J (1990) Natural variants of lipid A. In: Friedman H, Klein TW, Nakano M, Nowotny A (eds) “Endotoxin”. Plenum Press, New York, Vol 256, pp 45–70CrossRefGoogle Scholar
  28. Mühlradt PF, Wray V, Lehmann V (1977) A 31P-nuclear magnetic resonance study of the phosphate groups in lipopolysaccharide and lipid A from Salmonella. J Biol Chem 81:193–203Google Scholar
  29. Nikaido H (1970) Lipopolysaccharide in the taxonomy of Enterobacteriaceae. Int J Syst Bacteriol 20:383–406CrossRefGoogle Scholar
  30. Ohno K, Nishiyama H, Nagase H (1979) A mild methylation of alcohols with diazomethane catalyzed by silica gel, Tetrahedron Lett 45:4405–4406CrossRefGoogle Scholar
  31. Qureshi N, Cotter RJ, Takayama K (1986) Application of fast atom bombardement mass spectrometry and nuclear magnetic resonance on the structural analysis of purified lipid A. J Microbiol Meth 5:65–77CrossRefGoogle Scholar
  32. Rietschel ETh, Wollenweber HW, Brade H, Zähringer U, Lindner B, Seydel U, Bradaczek H, Barnickel G, Labischinski H, Giesbrecht P (1984a) Structure and conformation of the lipid A component of lipopolysaccharides. In: Rietschel ETh (ed) Chemistry of endotoxin. Elsevier, Amsterdam New York Oxford, pp 187–220Google Scholar
  33. Rietschel ETh, Wollenweber HW, Russa R, Brade H, Zähringer U, (1984b) Concepts on the chemical structure of lipid A. Rev Infect Dis 6:432–438CrossRefGoogle Scholar
  34. Rietschel ETh, Brade L, Schade U, Seydel U, Zähringer U, Kusumoto S, Brade H, (1987) Bacterial endotoxin: properties and structure of biologically active domains. In: Schrinner E, Richmond MH, Seibert G, Schwarz U (eds) Surface structures of microorganisms and their interactions with the mammalian host. Proc Workshop Conf Hoechst. Verlag Chemie, Weinheim, pp 1–41Google Scholar
  35. Rosner MR, Khorana HG, Satterthwait AC (1979a) The structure of lipopolysaccharide from a heptose-less mutant of Escherichia coli K-12. II. The application of 31P-NMR spectroscopy. J Biol Chem 254:5918–5925Google Scholar
  36. Rosner MR, Tang JY, Brazilay I, Khorana HG (1979b) Structure of the lipopolysaccharide from an Escherichia coli heptose-less mutant. I. Chemical degradation and identification of products. J Biol Chem 254:5906–5917PubMedGoogle Scholar
  37. Salimath PV, Weckesser J, Strittmatter W, Mayer H (1983) Structural studies on the non-toxic lipid a from Rhodopseudomonas sphaeroides ATCC 17023. Eur J Biochem 136:180–195CrossRefGoogle Scholar
  38. Seydel U, Lindner B, Wollenweber HW, Rietschel ETh (1984) Structural studies on the lipid A component of enterobacterial lipopolysaccharides by laser desorption mass spectrometry: Location of acyl groups at the lipid A backbone. Eur J Biochem 145:505–509CrossRefGoogle Scholar
  39. Shiba T, Dusumoto S (1984) Chemical synthesis and biological activity of lipid A analogs: In: Rietschel ETh (ed) Handbook of endotoxin: chemistry of endotoxin. Elsevier, Amsterdam New York Oxford, pp 284–307Google Scholar
  40. Shiba T, Kusumoto S, Inage M, Chaki H, Shimamoto T (1984) Recent developments in the organic synthesis of lipid A in relation to biologic activities. Res Infect Dis 6:478–482CrossRefGoogle Scholar
  41. Stackebrandt E, Murray RGE, Trüper HG (1988) Proteobacteria classis nov., a name for the phylogenetic taxon that includes the “purple bacteria and their relatives’. Int J Syst Bacteriol 38:321–325CrossRefGoogle Scholar
  42. Steinbüchel A (1989) Poly(hydroxyfettsäuren)-Speicherstoffe von Bakterien: Biosynthese und Genetik. Forum Mikrobiol 12:190–198Google Scholar
  43. Strittmatter W, Weckesser J, Salimath PV, Galanos C (1983) Nontoxic lipopolysaccharide from Rhodopseudomonas sphaeroides ATCC 17023. J Bacteriol 155:153–158PubMedPubMedCentralGoogle Scholar
  44. Tharanathan RN, Weckesser J, Strittmatter W, Mayer H (1983) Structural studies on the d-arabinose containing lipid A from Rhodospirillum tenue 2761. Eur J Biochem 136:175–180CrossRefGoogle Scholar
  45. Tharanathan RN, Salimath PV, Weckesser J, Mayer H (1985) The structure of lipid A from the lipopolysaccharide of Rhodopseudomonas gelatinosa 29/1. Arch Microbiol 141:279–283CrossRefGoogle Scholar
  46. Tsai CM, Frasch CE (1982) A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119:115–119CrossRefGoogle Scholar
  47. Weckesser J, Mayer H (1988) Different lipid A types in lipopolysaccharides of phototrophic and related non-phototrophic bacteria. FEMS Microbiol Rev 54:143–154CrossRefGoogle Scholar
  48. Weckesser J, Mayer H, Drews G, Fromme I (1975) Lipophilic O-antigens containing d-glycero-d-manno-heptose as the sole neutral sugar in Rhodopseudomonas gelatinosa. J Bacteriol 123:449–455PubMedPubMedCentralGoogle Scholar
  49. Westphal O, Lüderitz O, Bister F (1952) Über die Extraktion von Bakterien mit Phenol/Wasser. Z Naturforsch [c] 7b:148–155CrossRefGoogle Scholar
  50. Woese CR, Weisburg WG, Paster BJ, Hahn CM, Tanner RS, Krieg NR, Koops HP, Harms H, Stackebrandt E (1984) The phylogeny of purple bacteria: The beta subdivision. Syst Appl Microbiol 5:327–336CrossRefGoogle Scholar
  51. Wollenweber HW, Broady K, Lüderitz O, Rietschel ETh (1982) The chemical structure of lipid A: Demonstration of amide-linked 3-acyl-oxyacyl residues in Salmonella minnesota Re lipopolysaccharide. Eur J Biochem 124:191–198CrossRefGoogle Scholar
  52. Wollenweber HW, Seydel U, Lindner B, Lüderitz O, Rietschel ETh (1984) Nature and location of amide-bound (R)-3-acyloxyacyl group in lipid A of lipopolysaccharides from various Gram-negative bacteria. Eur J Biochem 145:265–272CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Hussein Masoud
    • 1
  • Teresa Urbanik-Sypniewska
    • 1
  • Buko Lindner
    • 2
  • Jürgen Weckesser
    • 3
  • Hubert Mayer
    • 1
  1. 1.Max-Planck-Institut für ImmunbiologieFreiburgGermany
  2. 2.Forschungsinstitut BorstelBorstelGermany
  3. 3.Institut für Biologie II, MikrobiologieAlbert-Ludwigs-Universität FreiburgFreiburgGermany

Personalised recommendations