Advertisement

Archives of Microbiology

, Volume 159, Issue 6, pp 574–578 | Cite as

The menaquinol oxidase of Bacillus subtilis W23

  • E. Lemma
  • H. Schägger
  • A. Kröger
Original Papers

Abstract

The quinol oxidase appears to be mainly responsible for the oxidation of bacterial MKH2 in Bacillus subtilis W23 growing with either glucose or succinate. The activity of the enzyme was maximum with dimethylnaphthoquinol, a water-soluble analogue of the bacterial menaquinol. Menadiol or duroquinol were less actively respired, and naphthoquinol was not oxidized at all. After fourtyfold purification the isolated enzyme contained 5.3 μmol cytochrome aa3 per gram of protein and negligible amounts of cytochrome b and c. The turnover number based on cytochrome aa3 was about 103 electrons · s-1 at pH 7 and 37°C. The preparation consisted mainly of a Mr 57000 and a Mr 36000 polypeptide. The N-terminal amino acid sequence of the latter polypeptide differed from that predicted by the qoxA gene of B. subtilis strain 168 (Santana et al. 1992), in that asp-14 predicted by qoxA was missing in the Mr 36000 polypeptide.

Key words

Bacillus subtilis Electron transport Quinol oxidase Respiration Menaquinone 

Abbreviations

DMN

2,3-dimethyl-1,4-naphthoquinone

DMNH2

2,3-dimethyl-1,4-naphthoquinol

Duroquinol

2,3,5,6-tetramethyl-1,4-benzoquinol

MK

menaquinone

MKH2

menaquinol

NBH2

2,3-dimethoxy-5-methyl-6-(n-nonyl)-1,4-benzoquinol

TMPD

N,N,N′, N′,-tetramethyl-1,4-phenylenediamine

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bergsma J, Meihuizen KE, Oeveren W van, Konings WN (1982) Restoration of NADH oxidation with menaquinones and menaquinone analogues in membrane vesicles from the menaquinone-deficient Bacillus subtilis aroD. Eur J Biochem 125: 651–657CrossRefGoogle Scholar
  2. Bode CH, Goebell H, Stähler E (1968) Zur Eliminierung von Trübungsfehlern bei der Eiweißbestimmung mit der Biuretmethode. Z Klin Chem Klin Biochem 6: 418–422PubMedGoogle Scholar
  3. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72: 248–254CrossRefGoogle Scholar
  4. Brandt U, Schägger H, Jagow G von (1988) Characterisation of binding of the methoxyacrylate inhibitors to mitochondrial cytochrome c reductase. Eur J Biochem 173: 499–506CrossRefGoogle Scholar
  5. Carter K, Gennis RB (1985) Reconstitution of the ubiquinonedependent pyruvate oxidase system of Escherichia coli with the cytochrome o terminal oxidase complex. J Biol Chem 260: 10986–10990PubMedGoogle Scholar
  6. Chepuri V, Lemieux L, Au DCT, Gennis RB (1990) The sequence of the cyo operon indicates substantial structural similarities between the cytochrome o ubiquinol oxidase of Escherichia coli and the aa 3-type family of cytochrome c oxidases. J Biol Chem 265: 11185–11192PubMedGoogle Scholar
  7. Clark WM (1960) Oxidation reduction potentials of organic systems. Williams & Wilkins, BaltimoreGoogle Scholar
  8. Ernster L, Danielson L, Ljunggren M (1962) DT Diaphorase I, Purification from the soluble fraction of rat-liver cytoplasm, and properties. Biochim Biophys Acta 58: 171–187CrossRefGoogle Scholar
  9. Hägerhäll C, Aasa R, Wachenfeldt C von, Hederstedt L (1992) Two hemes in Bacillus subtilis succinate: menaquinone oxidreductase (complex II). Biochemistry 31: 7411–7421CrossRefGoogle Scholar
  10. James WS, Gibson F, Taroni P, Poole RK (1989) The cytochrome oxidase of Bacillus subtilis: mapping of a gene affecting cytochrome aa 3, and its replacement by cytochrome o in a mutant strain. FEMS Microbiol Lett 58: 277–282CrossRefGoogle Scholar
  11. Kadenbach B (1987) Evolution of a regulatory enzyme: cyrochrome c oxidase (complex IV). Curr Top Bioenerg 15: 113–160CrossRefGoogle Scholar
  12. Kita K, Konishi K, Anraki Y (1984) Terminal oxidases of Escherichia coli aerobic respiratory chain. II. Purification and properties of cytochrome b 585-d complex from cells grown with limited oxygen and evidence of branched electron-carrying systems. J Biol Chem 259: 3375–3381PubMedGoogle Scholar
  13. Kröger A, Innerhofer A (1976) The function of the b cytochromes in the electron transport from formate to fumarate of Vibrio succinogenes. Eur J Biochem 69: 497–506CrossRefGoogle Scholar
  14. Kröger A, Unden G (1985) The function of menaquinone in bacterial electron transport. In: Lenaz G (ed) Coenzyme Q. Wiley, Chichester, pp 285–300Google Scholar
  15. Lauraeus M, Haltia T, Saraste M, Wikström M (1991) Bacillus subtilis expresses two kinds of haem-A-containing terminal oxidases. Eur J Biochem 197: 699–705CrossRefGoogle Scholar
  16. Lemma E, Unden G, Kröger A (1990) Menaquinone is an obligatory component of the chain catalyzing succinate respiration in Bacillus subtilis. Arch Microbiol 155: 62–67CrossRefGoogle Scholar
  17. Lemma E, Hägerhäll C, Geisler V, Brandt U, Jagow G von, Kröger A (1991) Reactivity of the Bacillus subtilis succinate dehydrogenase complex with quinones. Biochim Biophys Acta 1059: 281–285CrossRefGoogle Scholar
  18. Magnusson K, Philips MK, Guest JR, Rutberg L (1986) Nucleotide sequence of the gene for cytochrome b 558 of Bacillus subtilis succinate dehydrogenase complex. J Bacteriol 166: 1067–1071CrossRefGoogle Scholar
  19. Meyer TE, Cusanovich MA (1989) Structure, function and distribution of soluble bacterial redox proteins. Biochim Biophys Acta 975: 1–28CrossRefGoogle Scholar
  20. Philips MK, Hederstedt L, Hasnain S, Rutberg L, Guest JR (1987) Nucleotide sequence encoding the flavoprotein and iron-sulfur protein subunits of the Bacillus subtilis PY79 succinate dehydrogenase complex. J Bacteriol 169: 864–873CrossRefGoogle Scholar
  21. Santana M, Kunst F, Hullo MF, Rapoport G, Danchin A, Glaser P (1992) Molecular cloning, sequencing, and physiological characterization of the qox operon from Bacillus subtilis encoding the aa 3-600 quinol oxidase. J Biol Chem 267: 10225–10231PubMedGoogle Scholar
  22. Saraste M, Metso T, Nakari T, Jalli T, Lauraeus M, Oost J van der (1991) The Bacillus subtilis cytochrome-c oxidase. Eur J Biochem 195: 517–525CrossRefGoogle Scholar
  23. Schnorf U (1966) Der Einfluß von Substituenten auf Redoxpotential und Wuchseigenschaften von Chinonen. Doctoral thesis, no. 3871, ETH ZürichGoogle Scholar
  24. Vrij W de, Azzi A, Konings WN (1983) Structural and functional properties of cytochrome c oxidase from Bacillus subtilis W23. Eur J Biochem 131: 97–103CrossRefGoogle Scholar
  25. Vrij W de, Burg B van den, Konings WN (1987) Spectral and potentiometric analysis of cytochromes from Bacillus subtilis. Eur J Biochem 166: 589–595CrossRefGoogle Scholar
  26. Wachenfeldt C von, Hederstedt L (1990) Bacillus subtilis 13-kilodalton cytochrome c-550 encoded by cccA consists of a membrane-anchor and a heme domain. J Biol Chem 265: 13939–13948Google Scholar
  27. White PJ (1972) The nutrition of Bacillus megaterium and Bacillus subtilis. J Gen Microbiol 71: 505–514CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • E. Lemma
    • 1
  • H. Schägger
    • 2
  • A. Kröger
    • 1
  1. 1.Institut für MikrobiologieJ.-W.-Goethe UniversitätFrankfurt am MainGermany
  2. 2.Zehtrum der Biologischen ChemieKlinikum der J.-W.-Goethe UniversitätFrankfurt am MainGermany

Personalised recommendations