Archives of Microbiology

, Volume 159, Issue 6, pp 526–529 | Cite as

Cytochemical evidence of a fungal cell wall alteration during infection of Eucalyptus roots by the ectomycorrhizal fungus Cenococcum geophilum

  • Fabienne Paris
  • Jean Dexheimer
  • Frédéric Lapeyrie
Original Papers


When the ectomycorrhizal fungus Cenococcum geophilum changes from a saprophytic to a symbiotic stage, its cell wall structure becomes simplified. The external hyphal wall layer which, in the saprophytic stage, is highly reactive to the Gomori-Swift test becomes poorly reactive and can no longer be distinguished from the internal wall layer in the Hartig net hyphae. The intensely stained external wall layer was also absent from pure cultures of Cenococcum geophilum grown on a medium with a low sugar content. This cell wall alteration could be due to a decrease in the amount of melanin or of melanin plus cystine-containing proteins. This change may be necessary for increased nutrient exchange between symbionts through hyphal walls.

Key words

Ectomycorrhiza Fungus Cell wall, ultrastructure protein melanin Eucalyptus Cenococcum geophilum 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Aldington S, McDougall GJ, Fry SC (1991) Structure-activity relationships of biologically active oligosaccharides. Plant Cell Environ 14: 625–636CrossRefGoogle Scholar
  2. Bonfante-Fasolo P (1988) The role of the cell-wall as a signal in mycorrhizal associations. In: Scannerini S, Smith DC, Bonfante-Fasolo P, Gianinazzi-Pearson V (eds) Cell to cell signals in plants animal and microbiol symbiosis. NATO ASI Series, vol 17. Springer, Berlin Heidelberg New York, pp 219–235CrossRefGoogle Scholar
  3. Bonfante-Fasolo P, Gianinazzi-Pearson V (1986) Wall and plasmalemma modifications in mycorrhizal symbiosis. In: Gianinazzi-Pearson V, Gianinazzi S (eds) Physiological and genetical aspects of mycorrhizae. INRA, Paris, pp 65–73Google Scholar
  4. Dexheimer J, Pargney JC (1991) Comparative anatomy of the host-fungus interface in mycorrhizas. Experientia 47: 312–321CrossRefGoogle Scholar
  5. Dixon RA, Lamb CJ (1990) Molecular communications in interactions between plants and microbiol pathogens. Annu Rev Plant Physiol Plant mol Biol 41: 339–367CrossRefGoogle Scholar
  6. Duchesne L (1989) Protein synthesis in Pinus resinosa and the ectomycorrhizal fungus Paxillus involutus prior the ectomycorrhiza formation. Trees 3: 73–77CrossRefGoogle Scholar
  7. Freytag S, Mendgen K (1991) Surface carbohydrates and cell wall structure of in vitro induced ured spore infection structures of Uromyces viciae-fabae before and after treatment with enzymes and alkali. Protoplasma 161: 94–103CrossRefGoogle Scholar
  8. Gomori G (1946) The study of enzymes in tissue sections. Ann J Clin Path 16: 347–359CrossRefGoogle Scholar
  9. Guillot J, Genaud L, Gueugnot J, Damez M (1983) Purification and properties of two hemagglutinins of the mushroom Laccaria amethystina. Biochemistry 22: 5365–5369CrossRefGoogle Scholar
  10. Halverson LJ, Stacey G (1986) Signal exchange in plant-microbe interactions. Microbiol Rev 50: 193–225PubMedPubMedCentralGoogle Scholar
  11. Howard RJ, Ferrari MA (1989) Role of melanin in appressorium function. Exp Mycol 13: 403–418CrossRefGoogle Scholar
  12. Lapeyrie F, Mendgen K (1993) Quantitative estimation of the surface carbohydrates of ectomycorrhizal fungi in pure culture and during Eucalyptus root infection. Mycol Res (in press)Google Scholar
  13. Lei J, Lapeyrie F, Malajczuk N, Dexheimer J (1990) Infectivity of Pine and Eucalypt isolates of Pisolithus tinctorius (Pers.) Coker and Couch on roots of Eucalyptus urophylla S.T. Blake in vitro. 2. Ultrastructural and biochemical changes at the early stage of mycorrhizal formation. New Phytol 116: 115–122CrossRefGoogle Scholar
  14. Lei J, Wong KKY, Piche Y (1991) Extracellular Concanavalin A-binding sites during early interactions between Pinus banksiana and two closely realted genotypes of the ectomycorrhizal basidiomycete Laccaria bicolor. Mycol Res 3: 357–363CrossRefGoogle Scholar
  15. Malajczuk N, Lapeyrie F, Garbaye J (1990) Infectivity of Pine and Eucalypt isolates of Pisolithus tinctorius (Pers.) Coker and Couch on roots of Eucalyptus urophylla S.T. Blake in vitro. 1. Mycorrhizal formation in model systems. New Phytol 114: 627–631CrossRefGoogle Scholar
  16. Martin F, Hilbert JL (1991) Morphological, biochemical and molecular changes during ectomycorrhiza development. Experientia 47: 321–331CrossRefGoogle Scholar
  17. Mendgen K, Lange M, Bretschneider K (1985) Quantitative estimation of the surface carbohydrates on the infection structures of the rust fungi with enzymes and lectins. Arch Microbiol 140: 307–311CrossRefGoogle Scholar
  18. Peberdy JF (1990) Fungall cell wall—A review. In: Kuhn PJ, Trinci AP, Jung MJ, Goosey MW (eds). Biochemistry of the cell wall, chapter 2. Springer, Berlin Heidelberg New York, pp 5–30Google Scholar
  19. Rast DM, Stussi H, Hegnauer H, Nyhlen LE (1981). Melanins. In: Turian G, Hohl H (eds). The fungal spore. Morphogenetic controls. Academic Press, London, pp 507–531Google Scholar
  20. Swift JA (1968) The electron histochemistry of cystine-containing proteins in thin transverse sections of human hair. J Royal Microsc Soc 88: 449–460CrossRefGoogle Scholar
  21. Thiery JP (1967) Mise en évidence des polysaccharides sur coupes fines en microscopie électronique. J Micros 6: 987–1017Google Scholar

Copyright information

© Springer-Verlag 1993

Authors and Affiliations

  • Fabienne Paris
    • 1
  • Jean Dexheimer
    • 2
  • Frédéric Lapeyrie
    • 1
  1. 1.Centre de Recherche de Nancy, Laboratoire de MicrobiologieINRAChampenouxFrance
  2. 2.Laboratoire de Biologie des LigneuxUniversité de Nancy IVandoeuvre CedexFrance

Personalised recommendations