Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

N 5,N 10-Methylenetetrahydromethanopterin reductase (coenzyme F420-dependent) and formylmethanofuran dehydrogenase from the hyperthermophile Archaeoglobus fulgidus

  • 83 Accesses

  • 32 Citations

Abstract

Methylene-H4MPT reductase was found to be present in Archaeoglobus fulgidus in a specific activity of 1 U/mg. The reductase was purified 410-fold. The native enzyme showed an apparent molecular mass of approximately 200 kDa. Sodium dodecylsulfate/polyacrylamide gel electrophoresis revealed the presence of only 1 polypeptide of apparent molecular mass 35 kDa. The ultraviolet/visible spectrum of the reductase was almost identical to that of albumin indicating the absence of a chromophoric prosthetic group. The reductase was dependent on reduced coenzyme F420 as electron donor. Neither NADH, NADPH, nor reduced viologen dyes could substitute for the reduced deazaflavin. From reciprocal plots, which showed an intersecting patter, a K m for methylene-H4MPT of 16 μM, a K m for F420H2 of 4 μM, and a V max of 450 U/mg (Kcat=265 s-1) were obtained. The enzyme was found to be rapidly inactivated when incubated at 80°C in 100 mM Tris/HCl pH 7. The rate of inactivation, however, decreased to essentially zero in the presence of either F420 (0.2 mM), methylene-H4MPT (0.2 mM), albumin (1 mg/ml), or KCl (0.5 M). The N-terminal amino acid sequence was determined and found to be similar to that of methylene-H4MPT reductase (F420-dependent) from the methanogens Methanobacterium thermoautotrophicum, Methanosarcina barkeri, and Methanopyrus kandleri. The purification and some properties of formylmethanofuran dehydrogenase from A. fulgidus are also described.

This is a preview of subscription content, log in to check access.

Abbreviations

H4MPT:

tetrahydromethanopterin

CH2=H4MPT:

N 5,N 10-methylene-H4MPT

CH3−H4MPT:

N 5-methyl-H4MPT

CH≡H4MPT:

methenyl-H4MPT

F420 :

coenzyme F420

MFR:

methanofuran

CHO-MFR:

formyl-MFR

1 U:

1 μmol/min

References

  1. Achenbach-Richter L, Stetter KO, Woese CR (1987) A possible biochemical missing link among archaebacteria. Nature 327:48–49

  2. Bio-Rad Laboratories (1981) Instruction manual for Bio-Rad protein assay. Bio-Rad Laboratories, Richmond, Calif., USA

  3. Bode CH, Goebell H, Stähler E (1968) Zur Eliminierung von Trübungsfehlern bei der Eiweißbestimmung mit der Biuret-methode. Z Klin Chem Klin Biochem 5:419–422

  4. Börner G, Karrasch M, Thauer RK (1989) Formylmethanofuran dehydrogenase activity in cell extracts of Methanobacterium thermoautotrophicum and of Methanosarcina barkeri. FEBS Lett 244:21–25

  5. Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

  6. Brömmelstroet BWte, Hensgens CMH, Keltjens JT, Drift Cvan der, Vogels GD (1990) Purification and properties of 5,10-methylenetetrahydromethanopterin reductase, a coenzyme F420-dependent enzyme, from Methanobacterium thermoautotrophicum strain ΔH. J Biol Chem 265:1852–1857

  7. Brömmelstroet BWte, Hensgens CHM, Keltjens JT, Drift Cvan der, Vogels GD (1991) Purification and characterization of coenzyme F420-dependent 5,10-methylenetetrahydromethanopterin dehydrogenase from Methanobacterium thermoautotrophicum strain ΔH. Biochim Biophys Acta 1073:77–84

  8. Burggraf S, Jannasch HW, Nicolaus B, Stetter KO (1990) Archaeglobus profundus sp. nov., represents a new species within the sulphate-reducing archaebacteria. System Appl Microbiol 13:24–28

  9. Burggraf S, Stetter KO, Rouvière P, Woese CR (1991) Methanopyrus kandleri: an archaeal methanogen unrelated to all other known methanogens. System Appl Microbiol (in press)

  10. Dahl C, Koch H-G, Keuken O, Trüper HG (1990) Purification and characterization of ATP sulfurylase from the extremely thermophilic archaebacterial sulfate-reducer, Archaeglobus fulgidus. FEMS Microbiol Lett 67:27–32

  11. DiMarco AA, Bobik TA, Wolfe RS (1990) Unusual coenzymes of methanogenesis. Annu Rev Biochem 59:355–394

  12. Escalante-Semerena JC, Leigh JA, RinehartJr KL, Wolfe RS (1984a) Formaldehyde activation factor, tetrahydromethanopterin, a coenzyme of methanogenesis. Proc Natl Acad Sci USA 81:1976–1980

  13. Escalante-Semerena JC, RinehartJr KL, Wolfe RS (1984b) Tetrahydromethanopterin, a carbon carrier in methanogenesis. J Biol Chem 259:9447–9455

  14. Görg A, Postel W, Günther S (1988) The current state of twodimensional electrophoresis with immobilized pH gradients (a review). Electrophoresis 9:531–546

  15. Gorris LGM, Voet ACWA, van derDrift C (1991) Structural characteristics of methanogenic cofactors in the non-methanogenic archaebacterium Archaeoglobus fulgidus. Biofactors 3:29–35

  16. Hensel R, König H (1988) Thermoadaptation of methanogenic bacteria by intracellular ion concentration. FEMS Microbiol Lett 49:75–79

  17. Hewick RM, Hunkapiller MW, Hood LE, Dreyer WJ (1981) A gasliquid solid phase peptide and protein sequenator. J Biol Chem 256:7990–7997

  18. Huber R, Kurr M, Jannasch HW, Stetter KO (1989) A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110°C. Nature 342:833–834

  19. Kanodia S, Roberts MF (1983) Methanophosphagen: unique cyclic pyrophosphate isolated from Methanobacterium thermoautotrophicum. Proc Natl Acad Sci USA 80:5217–5221

  20. Karrasch M, Börner G, Enßle M, Thauer RK (1989) Formylmethanofuran dehydrogenase from methanogenic bacteria, a molybdoenzyme. FEBS Lett 253:226–230

  21. Karrasch M, Börner G, Enßle M, Thauer RK (1990a) The molybdoenzyme formylmethanofuran dehydrogenase from Methanosarcina barkeri contains a pterin cofactor. Eur J Biochem 194:367–372

  22. Karrasch M, Börner G, Thauer RK (1990b) The molybdenum cofactor of forunylmethanofuran dehydrogenase from Methanosarcina barkeri is a molybdopterin guanine dinucleotide. FEBS Lett 274:48–52

  23. Kräutler B, Kohler H-PE, Stupperich E (1988) 5′-Methylbenzimidazolyl-cobamides are the corrinoids from some sulfate-reducing and sulfur-metabolizing bacteria. Eur J Biochem 176:461–469

  24. Kurr M, Huber R, König H, Jannasch HW, Fricke H, Trincone A, Kristjansson JK, Stetter KO (1991) Methanopyrus kandleri, gen. and sp. nov. represents a novel group of hyperthermophilic methanogens, growing at 110°C. Arch Microbiol (in press)

  25. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

  26. Ma K, Thauer RK (1990a) N 5,N 10-Methylenetetrahydromethanopterin reductase from Methanosarcina barkeri. FEMS Microbiol Lett 70:119–124

  27. Ma K, Thauer RK (1990b) Single step purification of methylenetetrahydromethanopterin reductase from Methanobacterium thermoautotrophicum by specific binding to Blue Sepharose CL-6B. FEBS Lett 268:59–62

  28. Ma K, Thauer RK (1990c) Purification and properties of N 5,N 10-methylenetetrahydromethanopterin reductase from Methanobacterium thermoautotrophicum (strain Marburg). Eur J Biochem 191:187–193

  29. Ma K, Linder D, Stetter KO, Thauer RK (1991) Purification and properties of N 5,N 10-methylenetetrahydromethanopterin reductase (coenzyme F420-dependent) from the extreme thermophile Methanopyrus kandleri. Arch Microbiol 155:593–600

  30. Möller-Zinkhan D, Börner G, Thauer RK (1989) Function of methanofuran, tetrahydromethanopterin, and coenzyme F420 in Archaeoglobus fulgidus. Arch Microbiol 152:362–368

  31. Möller-Zinkhan D, Thauer RK (1990) Anaerobic lactate oxidation to 3 CO2 by Archaeoglobus fulgidus via the carbon monoxide dehydrogenase pathway: demonstration of the acetyl-CoA carbon-carbon cleavage reaction in cell extracts. Arch Microbiol 153:215–218

  32. Schwörer B, Thauer RK (1991) Activities of formylmethanofuran dehydrogenase, methylenetetrahydromethanopterin dehydrogenase, methylenetetrahydromethanopterin reductase, and heterodisulfide reductase in methanogenic bacteria. Arch Microbiol 155:459–465

  33. Seely RJ, Fahrney DE (1983) A novel diphospho-P,P′-diester from Methanobacterium thermoautotrophicum. J Biol Chem 258: 10835–10838

  34. Speich N, Trüper HG (1988) Adenylylsulphate reductase in a dissimilatory sulphate-reducing archaebacterium. J Gen Microbiol 134:1419–1425

  35. Stetter KO (1988) Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst Appl Microbiol 10:172–173

  36. Stetter KO, Lauerer G, Thomm M, Neuner A (1987) Isolation of extremely thermophilic sulphate reducers: evidence for a novel branch of archaebacteria. Science 236:822–824

  37. Thauer RK (1990) Energy metabolism of methanogenic bacteria. Biochim Biophys Acta 1018:256–259

  38. Thauer RK, Möller-Zinkhan D, Spormann AM (1989) Biochemistry of acetate catabolism in anaerobic chemotrophic bacteria. Annu Rev Microbiol 43:43–67

  39. Tindall BJ, Stetter KO, Collins MD (1989) A novel, fully saturated menaquinone from the thermophilic, sulphate-reducing archaebacterium Archaeoglobus fulgidus. J Gen Microbiol 135:693–696

  40. White RH (1988) Structural diversity among methanofurans from different methanogenic bacteria. J Bacteriol 170:4594–4597

  41. Woese CR, Kandler O, Wheelis ML (1990) Towards a natural system of organisms: proposal for the domains archaea, bacteria, and eucarya. Proc Natl Acad Sci USA 87:4576–4579

  42. Woese CR, Achenbach L, Rouvière P, Mandelco L (1991) Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts. Syst Appl Microbiol (in press)

  43. Zellner G, Stackebrandt E, Kneifel H, Messner P, Sleytr UB, Conway de Macario E, Zabel H-P, Stetter KO, Winter J (1989) Isolation and characterization of a thermophilic, sulfate reducing archaebacterium, Archaeoglobus fulgidus strain Z. Syst Appl Microbiol 11:151–160

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schmitz, R.A., Linder, D., Stetter, K.O. et al. N 5,N 10-Methylenetetrahydromethanopterin reductase (coenzyme F420-dependent) and formylmethanofuran dehydrogenase from the hyperthermophile Archaeoglobus fulgidus . Arch. Microbiol. 156, 427–434 (1991). https://doi.org/10.1007/BF00248722

Download citation

Key words

  • Sulfate-reducing archaebacteria
  • Hyperthermophilic bacteria
  • Archaeglobus fulgidus
  • Tetrahydromethanopterin
  • Methanofuran
  • Coenzyme F420
  • Thermostable enzymes