Advertisement

Archives of Microbiology

, Volume 155, Issue 2, pp 149–152 | Cite as

Inhibition of aconitase and fumarase by nitrogen compounds in Rhodobacter capsulatus

  • M. Martinez Luque-Romero
  • F. Castillo
Original Papers

Abstract

High levels of aconitase and fumarase activities were found in Rhodobacter capsulatus E1F1 cells cultured with nitrate as the sole nitrogen source either under light-anaerobic or dark-aerobic conditions. Both activities were strongly and reversibly inhibited in vitro by nitrite or nitric oxide, whereas nitrate or hydroxylamine showed a lower effect. Other enzymes of the tricarboxylic acids cycle such as malate dehydrogenase or isocitrate dehydrogenase were not affected by these nitrogen compounds. When growing on nitrate in the dark R. capsulatus E1F1 cells accumulated nitrite intracellularly, so that an in vivo inhibition of aconitase and fumarase could account for the strong inhibition of growth observed in the presence of nitrite under dark-aerobic conditions.

Key words

Nitrate photoassimilation Nitrite Fumarase Aconitase Rhodobacter capsulatus 

Abbreviations

ACO

aconitase

FUM

fumarase

MDH

malate dehydrogenase

ICDH

isocitrate dehydrogenase

TCA

tricarboxylic acid

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. CaballeroFJ, Moreno-ViviánC, CastilloF, CárdenasJ (1986) Nitrite uptake system in photosynthetic bacterium Rhodopseudomonas capsulata E1F1. Biochim Biophys Acta 848:16–23CrossRefGoogle Scholar
  2. CarrGJ, FergusonSJ (1990) Nitric oxid formed by nitrite reductase of Paracoccus denitrificans is sufficiently stable to inhibit cytochrome oxidase activity and is reduced by its reductase under aerobic conditions. Biochim Biophys Acta 1017:57–62CrossRefGoogle Scholar
  3. CastilloF, CárdenasJ (1982) Nitrate reduction by photosynthetic purple bacteria. Photosynth Res 3:3–18CrossRefGoogle Scholar
  4. CastilloF, CaballeroFJ, CárdenasJ (1981) Nitrate photoassimilation by the phototrophic bacterium Rhodopseudomonas capsulata E1F1. Z Naturforsch 36c:1025–1029CrossRefGoogle Scholar
  5. DeMasterEG, RaijL, ArcherSL, WeirEK (1989) Hydroxylamine is a vasorelaxant and a possible intermediate in the oxidative conversion of l-arginine to nitric oxide. Biochem Biophys Res Commun 163:527–533CrossRefGoogle Scholar
  6. FergusonFJ, JacksonJB, McEwanAG (1987) Anaerobic respiration in the Rhodospirillaceae: characterization of pathways and evaluation of roles in redox balancing during photosynthesis. FEMS Microbiol Rev 46:117–143CrossRefGoogle Scholar
  7. GoldbergDM, EllisG (1983) Isocitrate dehydrogenase. In: BergmeyerHU, BergmeyerJ, GrasslM (eds) Methods of enzymatic analysis, vol III. Verlag Chemie, Weinheim, pp 183–190Google Scholar
  8. JiX-B, HollocherTC (1989) Nitrate reductase of Escherichia coli as a NO-producing nitrite reductase. Biochem Arch 5: 61–66Google Scholar
  9. KerberNL,CaballeroFJ,CárdenasJ (1982) Nitrate reductase from Rhodopseudomonas sphaeroides. J Bacteriol 150:1091–1097PubMedPubMedCentralGoogle Scholar
  10. KerberNL, CaballeroFJ, CárdenasJ (1981) Assimilatory nitrite reductase from Rhodopseudomonas capsulata E1F1. FEMS Microbiol Lett 11:249–252CrossRefGoogle Scholar
  11. KlemmeJH (1979) Occurrence of assimilatory nitrate reduction in phototrophic bacteria of the genera Rhodospirillum and Rhodopseudomonas. Microbiologica 2:415–420Google Scholar
  12. LowryOH, RosebroughMJ, FarAL, RandallRJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  13. Moreno-ViviánC, CastilloF, CárdenasJ (1982) Effect of light and darkness on nitrate assimilation by Rhodopseudomonas capsulata E1F1. Photosynth Res 3:313–319CrossRefGoogle Scholar
  14. NeilsonAH, NordlundS (1975) Regulation of nitrogenase synthesis in intact cells of Rhodospirillum rubrum: inactivation of nitrogen fixation by ammonia, l-glutamine and l-asparagine. J Gen Microbiol 91:53–62CrossRefGoogle Scholar
  15. PichinotyF, MottetF, Bigliardi-RouvierJ, ForgetP (1963) Le cycle de Krebs chez les bactéries dénitrifiantes. Z Naturforsch 18b:492–494CrossRefGoogle Scholar
  16. SmithAF (1983) Malate dehydrogenase. In: BergmeyerHU, BergmeyerJ, GrasslM (eds) Methods of enzymatic analysis, vol III. Verlag Chemie, Weinheim, pp 163–171Google Scholar
  17. SnellFD, SnellCT (1949) Colorimetric methods of analysis, vol 2. Van Nostrand, New York, pp 804–805Google Scholar
  18. StittM (1984) Fumarase In: BergmeyerHU, BergmeyerJ, GrasslM (eds) Methods of enzymatic analysis, vol IV. Verlag Chemie, Weinheim, pp 359–362Google Scholar
  19. WeaverPF, WallJD, GestH (1975) Characterization of Rhodopseudomonas capsulata. Arch Microbiol 105:207–216CrossRefGoogle Scholar
  20. WimpennyJWT, ColeJA (1967) The regulation of metabolism in facultative bacteria. III. The effect of nitrate. Biochim Biophys Acta 148:233–242CrossRefGoogle Scholar
  21. WimpennyJWT, WarmsleyAMH (1968) The effect of nitrate on Krebs cycle enzymes in various bacteria. Biochim Biophys Acta 156:297–303CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • M. Martinez Luque-Romero
    • 1
  • F. Castillo
    • 1
  1. 1.Departamento de Bioquímica y Biología Molecular y FisiologíaFacultad de CienciasCórdobaSpain

Personalised recommendations