Archives of Microbiology

, Volume 155, Issue 2, pp 131–136 | Cite as

Glucose transport into the extremely halophilic archaebacteria

  • L. O. Severina
  • N. V. Pimenov
  • V. K. Plakunov
Original Papers


Penetration of glucose into cells of several extremely halophilic archaebacteria of the Halobacterium and Haloferax genera (Halobacterium saccharovorum and Halobacterium salinarium, Haloferax volcanii and Haloferax mediterranei) has been studied. Some characteristics of transport systems of carbohydrate-utilizing halobacteria Halobacterium saccharovorum, Haloferax mediterranei and Haloferax volcanii (pH and temperature optima, stereospecificity, kinetic parameters) have been determined. Inability of H. salinarium cells for active glucose transport has been shown. The dependence of glucose transport on the Na+ ions gradient (on the whole cells and membrane vesicles) has been demonstrated. Cells or membrane vesicles of carbohydrate-utilizing halobacteria grown in media containing this sugar indicated the activation of glucose transport, whereas cells grown in media without sugars did not. This fact has allowed us to conclude that corresponding transport systems are inducible.

Key words

Archaebacteria Extreme halophiles Glucose transport Halobacterium Haloferax 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. FeinJE, MacLeodRA (1975) Characterization of neutral amino acid transport in a marine pseudomonad. J Bacteriol 124: 1177–1190PubMedPubMedCentralGoogle Scholar
  2. GonzalesC, GuitierrezC, RamirezC (1978) Halobacterium vallismorits sp. nov., an amylolytic and carbohydrate-metabolizing extremely halophilic bacterium. Can J Microbiol 24: 710–715CrossRefGoogle Scholar
  3. HartreeGF (1972) Determination of protein: a modification of the Lowry method that give a linear photometric response. Anal Biochem 48: 422–427CrossRefGoogle Scholar
  4. IvanovskiRN, KarsanovVV (1982) Succinate uptake by Thiocapsa roseopersicina and Rhodospirillum rubrum. Mikrobiologiya 51: 230–235Google Scholar
  5. JavorB, RequadtC, StoeckeniusW (1982) Box-shaped halophilic bacteria. J Bacteriol 151: 1532–1542PubMedPubMedCentralGoogle Scholar
  6. JuezG, Rodriguez-ValeraF, VentosaA, KushnerDJ (1986) Haloarcula hispanica sp. nov. and Haloferax gibbonsii sp. nov. Two new species of extreme halophilic archaebacteria. Syst Appl Microbiol 8: 75–79CrossRefGoogle Scholar
  7. MacDonaldRE, LanyiJK (1975) Light-induced leucin transport in Halobacterium halobium envelope vesicles: a chemiosmotic system. Biochemistry 14: 2882–2889CrossRefGoogle Scholar
  8. MacDonaldRE, GreenRV, LanyiJK (1977) Light-activated amino acid transport systems in Halobacterium halobium envelope vesicles: role of chemical and electrical gradients. Biochemistry 16: 3227–3235CrossRefGoogle Scholar
  9. MidgleyM, DawesE (1973) The regulation of transport of glucose and methyl-α-glucoside in Pseudomonas aeruginosa. Biochemistry 132: 141–154CrossRefGoogle Scholar
  10. OrenA (1983) Halobacterium sodomense sp. nov., a Dead Sea Halobacterium with an extremely high magnesium requirement. Int J Syst Bacteriol 33: 381–386CrossRefGoogle Scholar
  11. PimenovNV, SeverinaLO, PlakunovVK (1986) Glucose and galactose utilization by extreme halophiles during their growth and pigment production. Microbiology 55: 271–275Google Scholar
  12. PimenovNV, SeverinaLO, PlakunovVK (1987) Some characteristics of glucose transport in the extreme halophilic bacterium Halobacterium mediterranei. Microbiology 56: 571–575Google Scholar
  13. PimenovNV, SeverinaLO, PlakunovV (1988) Possible mechanisms of glucose and glucose-6-phosphate uptake by cells of extreme halophilic cocci. Microbiology 57: 577–581Google Scholar
  14. Rodriguez-ValeraF, Ruiz-BerraqueroF, Ramos-CormenzanaA (1980) Isolation of extremely halophilic bacteria able to grow in defined inorganic media with single carbon sources. J Gen Microbiol 119: 535–538Google Scholar
  15. Rodriguez-ValeraF, JuezG, KushnerDJ (1983) Halobacterium mediterranei sp. nov., a new carbohydrate-utilizing extreme halophile. Syst Appl Microbiol 4: 369–381CrossRefGoogle Scholar
  16. SeverinaLO, PimenovNV (1988a) Glucose metabolism in extreme halophilic archaebacteria. Microbiology 57: 152–157Google Scholar
  17. SeverinaLO, PimenovNV (1988b) Glucose metabolism in Halococcus morrhuae. Microbiology 57: 718–722Google Scholar
  18. TindallBJ, RossHNM, GrantWD (1984) Natronobacterium gen. nov. and Natronococcus gen. nov. Two new genera of haloalcalophilic archaebacteria. Syst Appl Microbiol 5: 41–57CrossRefGoogle Scholar
  19. TomlinsonGA, HochsteinLI (1972) Isolation of carbohydrate-metabolizing extremely halophilic bacteria. Can J Microbiol 18: 698–701CrossRefGoogle Scholar
  20. TomlinsonGA, HochsteinLI (1976) Halobacterium saccharovorum sp. nov., a carbohydrate-metabolizing extremely halophilic bacterium. Can J Microbiol 22: 587–591CrossRefGoogle Scholar
  21. TorreblancaM, Rodriguez-ValeraF, JuezG, VentosaA, KamekuraM, KatesM (1986) Classification of non-alkaliphilic halobacteria based on numericial taxonomy and polar lipid composition, and description of Haloarcula gen. nov. and Haloferax gen. nov. Syst Appl Microbiol 8: 89–99CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • L. O. Severina
    • 1
  • N. V. Pimenov
    • 1
  • V. K. Plakunov
    • 1
  1. 1.Institute of MicrobiologyAcademy of Sciences of the USSRMoscowUSSR

Personalised recommendations