Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Global solutions for an extended class of hyperbolic systems of conservation laws

  • 124 Accesses

  • 56 Citations

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Cesari, L., Sulle funzioni a variazione limita. Ann. Scuola Norm. Pisa (2), 5, 299–313 (1936).

  2. 2.

    Dieudonné, J., Foundations of modern analysis. Academic Press 1960.

  3. 3.

    De Giorgi, E., Nuovi teoremi relativi alle misure (n−1)-dimensionale in uno spazio ad r dimensioni. Richerche Mat. 36, 95–113 (1955).

  4. 4.

    Glimm, J., Solutions in the large for non-linear hyperbolic systems of equations. Comm. Pure Appl. Math. 18, 695–717 (1965).

  5. 5.

    Glimm, J., & P. D. Lax, Decay of solutions of systems of hyperbolic conservation laws. Bull. A. M. S. 73, 105 (1967).

  6. 6.

    Fleming, W. H., Functions with generalized gradient and generalized surfaces. Ann. Mat. Pura Appl. ser. 4, 44, 93–104 (1957).

  7. 7.

    Johnson, J. L., & J. A. Smoller, Global solutions of certain hyperbolic systems of quasilinear equations. J. Math. Mech. 17, 561–576 (1967).

  8. 8.

    Johnson, J. L., & J. A. Smoller, Global solutions of hyperbolic systems of conservation laws in two dependent variables. To appear in Bull. A. M. S.

  9. 9.

    Lax, P. D., Hyperbolic systems of conservation laws, II. Comm. Pure Appl. Math. 10, 537–566 (1957).

  10. 10.

    Lax, P. D., Development of singularities of solutions of nonlinear hyperbolic partial differential equations. J. Math. Ph. 5, 611–613 (1964).

  11. 11.

    Zhang, Tong & Guo, Yu-Fa, A class of initial-value problems for systems of aerodynamic equations. Acta Math. Sinica 15, 386–396 (1965). English translation in Chinese Math. 7, 90–101 (1965).

Download references

Author information

Additional information

Communicated by L. Cesari

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Smoller, J.A., Johnson, J.L. Global solutions for an extended class of hyperbolic systems of conservation laws. Arch. Rational Mech. Anal. 32, 169–189 (1969). https://doi.org/10.1007/BF00247508

Download citation

Keywords

  • Neural Network
  • Complex System
  • Nonlinear Dynamics
  • Electromagnetism
  • Global Solution