Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Constructions, proofs and the meaning of logical constants

  • 112 Accesses

  • 49 Citations

This is a preview of subscription content, log in to check access.


  1. Beeson, M., A Theory of Constructions and Proofs, Preprint No. 134, Dept. of Mathematics, Univ. of Utrecht (1979).

  2. Beeson, M., Problematic Principles in Constructive Mathematics, Preprint No. 185, Dept. of Mathematics, Univ. of Utrecht (1981).

  3. Beeson, M., ‘Formalizing Constructive Mathematics: Why and how?’, in Richman, E. (ed.), Constructive Mathematics, Lecture Notes in Mathematics, Vol. 873, pp. 146–190, Springer, Berlin (1981a).

  4. Bell, D. Frege's Theory of Judgement, Clarendon Press, Oxford (1979).

  5. Brouwer, L. E. J., ‘Mathematik, Wissenschaft, Sprache’, Monatshefte f. Mathematik und Physik 36 (1929), 153–164.

  6. Brouwer, L. E. J., ‘Consciousness, Philosophy and Mathematics’, in Proc. Xth Intern. Congress Philosophy, pp. 1235–1249, North-Holland, Amsterdam (1948).

  7. Brouwer, L. E. J., Brouwer's Cambridge Lectures on Intuitionism, v. Dalen (ed.), C.U.P., Cambridge (1981).

  8. de Bruijn, N. G., ‘A Survey of the Project AUTOMATH’, in Seldin and Hindley (eds.), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 579–606, Academic Press, London (1980).

  9. van Dalen, D., ‘Lectures on Intuitionism’, in Mathias, A. D. and Rogers, H. (eds.), Cambridge Summer School in Mathematical Logic, pp. 1–94, Lecture Notes in Mathematics 337, Springer, Berlin (1973).

  10. van Dalen, D., ‘Interpreting Intuitionistic Logic’, in Baayer, v. Dulst and Oosterhoof (eds.), Proc. Bicentenical Congress Wiskundig Genootschap, Vol. I, pp. 133–148. Mathematical Centre Tracts 100, Mathematisch Centrum, Amsterdam (1979).

  11. Dummett, M., ‘The Philosophical Singnificance of Gödel's Theorem’, in TE, pp. 186–201 (1963). Also published in Ratio V (1963), 140–155.

  12. Dummett, M., ‘The Reality of the Past’, in TE, pp. 358–374 (1969).

  13. Dummett, M., Frege, Duckworth. London (1973).

  14. Dummett, M., ‘The Justification of Deduction’, in TE, pp. 290–318 (1973a). Also published in Proc. British Academy, Vol. LIX, 1975, pp. 201–232.

  15. Dummett, M., ‘What is a Theory of Meaning? (II)’, in Evans and McDowell (eds.), Truth and Meaning, Clarendon Press, Oxford (1976).

  16. Dummett, M., Elements of Intuitionism, Clarendon Press, Oxford (1977).

  17. Dummett, M., ‘Comments on Professor Prawitz's Paper’, in von Wright (ed.), Logic and Philosophy, pp. 11–18, Nijhoff, The Hague (1980).

  18. TE, Truth and Other Enigmas, Duckworth, London (1978).

  19. Feferman, S., ‘Constructive Theories of Functions and Classes’, in Boffa v. Dalen and McAloon (eds.), Logic Colloquim '78, pp. 159–224, North-Holland, Amsterdam (1979).

  20. Frege, G., ‘Der Gedanke’, Beiträge zur Philosophie des Deutschen Idealismus 1 (1918), 588–77.

  21. Goodman, N., ‘A Theory of Constructions Equivalent to Arithmetic’, in Kino, Myhill and Vesley (eds.), Intuitionism and Proof Theory, pp. 101–120, North-Holland, Amsterdam (1970).

  22. Heyting, A., ‘Sur la logique intuitioniste’, Acad. Royale de Belgique, Bulletin de la classe de Sciences (5), 16 (1930), 957–963.

  23. Heyting, A., ‘Die intuitionistische Grundlegung der Mathematik’, Erkenntnis 2 (1931), 106–115.

  24. Heyting, A., Mathematische Grundlagenforschung, Intuitionismus, Beweistheorie, Springer. Berlin (1934).

  25. Heyting, A., ‘Intuitionism in Mathematics’, in R. Klibansky (ed.), Philosophy in the Mid-century: A Survey, pp. 101–115, La nuova editrice, Firenze (1958).

  26. Heyting, A., ‘Blick von den intuitionitischen Warte’, Dialectica 12, (1958a) 332–345.

  27. Heyting, A., ‘On truth in mathematics’, in Verslag van de plechtige viering van het hondervijftigjarig bestaan der Koninklijke Nederlanse Akademie van Wetenschappen met de teksten der bij die gelegenheid gehouden redevoeringen en voordrachten, pp. 227–279, North-Holland, Amsterdam (1958b).

  28. Heyting, A., ‘Remarques sur le constructivisme’, Logique et Analyse 3 (1960), 177–182.

  29. Heyting, A., ‘Intuitionism in Mathematics’, in R. Klibansky (ed.), Contemporary Philosophy. A survey I Logic and Foundations of Mathematics, pp. 316–323, La Nuova Italia editrice, Firenze (1968).

  30. Heyting, A., ‘Intuitionistic Views on the Nature of Mathematics’, Synthese 27 (1974), 79–91.

  31. Howard, W. A., ‘The Formulae-as-types Notion of Construction’, in Seldin and Hindley (eds.), To H. B. Curry: Essays on Combinatory Logic, Lambda Calculus and Formalism, pp. 479–490, Academic Press, London (1980).

  32. Kleene, S. C., ‘On the Interpretation of Intuitionistic Number Theory’, Journal of Symbolic Logic 10 (1945), 109–124.

  33. Kolmogoroff, A., ‘Zur Deutung der Intuitionistischen Logik’, Math. Zeitschr. 35 (1932), 58–65.

  34. Kreisel, G., ‘Essay-review of Wittgenstein (1956)’ British J. Philosophy of Science, Vol. XI (1958), 135–158.

  35. Kreisel, G., ‘Set-theoretical Problems Suggested by the Notion of Potential Totality’, in Infinitistic Methods, pp. 103–140, Pergamon Press, Oxford (1961).

  36. Kreisel, G., ‘Foundations of Intuitionistic Logic’, in Nagel, Suppes and Tarski (eds.), Logic, Methodology and Philosophy of Science, pp. 198–210. Stanford Univ. Press, Stanford (1962).

  37. Kreisel, G., ‘Mathematical Logic’, in Saaty (ed.) Lectures on Modern Mathematics, III, pp. 95–195, Wiley, New York (1965).

  38. Kreisel, G., ‘Perspectives in the Philosophy of Pure Mathematics’, in Suppes, Henkin, Joja and Moisil (eds.), Logic, Methodology and Philosophy of Science IV, pp. 255–278, North-Holland, Amsterdam (1973).

  39. Läuchli, H., ‘An Abstract Notion of Realizability for which Intuitionistic Predicate Calculus is Complete’, in Myhill, Kino and Vesley (eds.) Intuitionism and Proof Theory, pp. 227–234, North-Holland, Amsterdam (1970).

  40. Martin-Löf, P., An Intuitionistic Theory of Types; Predicative Part’, in Rose and Shepherdson (eds.), Logic Colloquim '73, pp. 73–118, North-Holland, Amsterdam (1975).

  41. Martin-Löf, P., ‘About Models for Intuitionistic Type-theories and the Notion of Definitional Equality’, in Kanger (ed.), Proc. 3rd Scand. Logic Symp., pp. 81–109. North-Holland, Amsterdam (1975a).

  42. Martin-Löf, P., Constructive Mathematics and Computer Programming, Report No. 11, Dept. of Mathematics, Univ. of Stockholm (1979). Forthcoming in the Proceedings of the VIth Conference for Logic, Methodology and Philosophy of Science.

  43. Myhill, J., ‘Notes Towards and Axiomatization of Intuitionistic Analysis’, Logique et Analyse 35 (1967), 280–297.

  44. Myhill, J., ‘The Formalization of Intuitionism’, in R. Klibansky (ed.), Contemporary Philosophy I; Logic and Foundations of Mathematics, pp. 324–341, La Nuova Italia Editrice, Firenze (1968).

  45. Scott, D. S., ‘Constructive Validity’, in Symposium on Automatic Demonstration, Lecture Notes in Mathematics 125, pp. 237–275, Springer, Berlin (1970).

  46. Troelstra, A. S. Principles of Intuitionism, Lecture Notes in Mathematics 95, Springer, Berlin (1969).

  47. Troelstra, A. S., ‘Aspects of Constructive Mathematics’, in Barwise, J. (ed.), Handbook of Mathematical Logic, pp. 973–1052, North-Holland, Amsterdam (1977).

  48. Troelstra, A. S., ‘Arend Heyting and his Contribution to Intuitionism’, Niew Archief voor Wiskunde (3), XXIX (1981), 1–23.

  49. Wittgenstein, L., Remarks on the Foundations of Mathematics, Blackwell, Oxford (1956).

Download references

Author information

Additional information

The research reported herein was supported by a Fellowship by Examination at Magdalen College, Oxford. It was begun when I was a Visiting Lecture at Utrecht, Spring 1980, as a reaction to Beeson's 1979, and I am grateful to him, van Dalen and Visser for almost daily opposition. The paper has been presented at Stockholm, Manchester, Oxford, Münster and Oberwohlfach and I have benefitted from comments by participants in those seminars and Peter Aczel in particular. Professors Kreisel and Martin-Löf, as well as the Editor offered detailed and constructive comments on a preliminary version.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sundholm, G. Constructions, proofs and the meaning of logical constants. J Philos Logic 12, 151–172 (1983).

Download citation


  • Logical Constant