Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Über den Einfluß von Phlorrhizin und Aminonucleosid auf den Phosphateinbau in Leber- und Nierenphosphatide

  • 10 Accesses

Zusammenfassung

1. Es werden die spezifischen Phosphat-Aktivitäten der Leber- und Nieren-Phosphatide der Ratte mit Hilfe radioaktiven Phosphats in vivo und in vitro untersucht.

2. Sie steigen bei Phosphatgabe in vivo unter Phlorrhizin in hoher Dosierung (750 mg/kg subcutan innerhalb 6 Std) um ein Viertel an; Unterschiede einzelner Phosphatidkomponenten lassen sich nicht erkennen. Sie bleiben unter Aminonucleosid (Nephrosestadium mit 122,5 mg/kg über 7 Tage) unverändert; nur die Phosphatidyläthanolamin-Komponente fällt in ihrer spezifischen Aktivität ab.

3. Bei Phosphatgabe in vitro zu Gewebshomogenaten vorbehandelter Tiere steigen die spezifischen Aktivitäten unter Phlorrhizin noch etwas stärker an. Ebenso wird ein derartiger Anstieg für Nierenhomogenate unter Aminonucleosid-Vorbehandlung sichtbar.

4. Bei Phosphatgabe in vitro zu Gewebshomogenaten unbehandelter Tiere läßt Phlorrhizinzugabe in vitro die spezifische Aktivität in Leberphosphatiden absinken, in Nierenphosphatiden stark ansteigen. Aminonucleosidzugabe erhöht sie nur in Nierenphosphatiden.

Summary

1. The specific activities of phosphate in rat liver and kidney phospholipides using radioactive phosphate was investigated in vivo and in vitro.

2. High doses of phlorrhizin (750 mg/kg subc. within 6 hours) increase the in vivo incorporation of phosphate about 25 per cent; differences within the single components could not be seen. Application of aminonucleoside (manifest nephrosis by 122,5 mg/kg for 7 days) did not change the incorporation; only a decrease of the phosphatidyl ethanolamine component was observed.

3. Application of phosphate to tissue homogenates of pretreated rats resulted in a more enhanced specific phosphate activity by phlorrhizin. A pretreatment with aminonucleoside produced a similar increase in kidney homogenates.

4. The phosphate specific activity diminishes after addition of both phosphate and phlorrhizin to liver homogenates in vitro; it increases strongly when given to kidney homogenates. Aminonucleoside raised only the phosphate incorporation in kidney homogenates in vitro.

This is a preview of subscription content, log in to check access.

Literatur

  1. Artom, C., and W. H. Fishman: The relation of the diet to the composition of tissue phospholipids. I, II, III. J. biol. Chem. 148, 405, 415, 423 (1943).

  2. Bartlett, P., and L. Ford: Studies on the mechanism of aminonucleoside-induced nephrosis in the rat II. Oxidative phosphorylation. Fed. Proc. 19, 38 (1960).

  3. —, J. Keegan, and H. Schaefer: Mechanism of aminonucleoside-induced nephrosis in the rat III. Kidney mitochondrial phosphorylation and dephosphorylation activity. Proc. Soc. exp. Biol. (N.Y.) 112, 96 (1963).

  4. Berenblum, J., and E. Chain: An improved method for the colorimetric determination of phosphate. Biochem. J. 32, 295 (1938).

  5. Bruchhausen, F. v., Jun.: Beeinflussung des Phosphatidstoffwechsels durch Phlorrhizin und Aminonucleosid. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 245, 85 (1963).

  6. Chen, P. S., and W. F. Neuman: Renal absorption of calcium through its inhibition by various chemical agents. Amer. J. Physiol. 180, 632 (1955).

  7. Cohen, J. J., F. Berglund, and W. D. Lotspeich: Renal tubular reabsorption of acetoacetate, inorganic sulfate, and inorganic phosphate in the dog as affected by glucose and phlorizin. Amer. J. Physiol. 184, 91 (1956).

  8. Colas, M. C., R. Perlés et P. Malangeau: Excretion rénale comparée des polyols linéaires et du méso-inositol. Ann. pharm. franç. 17, 260 (1959).

  9. Conover, T. E., G. V. Marinetti, R. F. Witter, and E. Stotz: The incorporation of [32P] orthophosphate into a specific lipid fraction and into adenine nucleotides of mitochondria during oxidative phosphorylation. Biochim. biophys. Acta (Amst.) 41, 264 (1960).

  10. Cori, G. T., S. P. Colowick, and C. F. Cori: The activity of the phosphorylating enzyme in muscle extract. J. biol. Chem. 127, 771 (1939).

  11. Cornatzer, W. E., W. A. Sandstrom, and J. H. Reiter: Silicic acid impregnated glass-paper chromatography of phosphatides. Biochim. biophys. Acta (Amst.) 57, 568 (1962).

  12. Dawson, R. M. C.: The measurement of 32P labelling of individual kephalins and lecithin in a small sample of tissue. Biochim. biophys. Acta (Amst.) 14, 374 (1954).

  13. Diluzio, N. R., and D. B. Zilversmit: Turnover of liver and plasma phospholipides of phlorizinized dogs. Amer. J. Physiol. 170, 472 (1952).

  14. Dratz, A. F., and P. Handler: Renal phosphate and carbohydrate metabolism studied with the aid of radiophosphorous. J. biol. Chem. 197, 419 (1952).

  15. Dubach, U. C., u. L. Recant: Aminonucleosidnephrose — Versuch einer biochemischen Erklärung ätiologisch verschiedener Nephroseformen. Klin. Wschr. 38, 1177 (1960).

  16. Fleischmann, W.: Zur Kenntnis der Phlorrhizinwirkung. Biochem. Z. 291, 415 (1937).

  17. Folch, J., I. Ascoli, M. Lees, J. A. Meath, and F. N. le Barron: Preparation of lipide extracts from brain tissue. J. biol. Chem. 191, 833 (1951).

  18. Franz, H. E., M. Franz u. K. Decker: Zur Frage des Wirkungsorts von Aminonucleosid. Hoppe Seylers Z. physiol. Chem. 327, 243 (1962).

  19. Gorski, J., Y. Aizawa, and G. C. Mueller: Effect of puromycin in vivo on the synthesis of protein, RNA and phospholipids in rat tissue. Arch. Biochem. 95, 508 (1961).

  20. Gutman, A., and E. Shafrir: Adipose tissue in experimental nephrotic syndrome of rats. Bull. Res. Coun. Israel E 9, 178 (1961).

  21. Habermann, E., G. Bandtlow u. B. Krusche: Bestimmung von Plasma-Phospholipoiden nach Dünnschichtchromatographie. Klin. Wschr. 39, 817 (1961).

  22. Harris, E. J., and T. A. J. Prankerd: Phloridzin and red cell phosphate turnover. Experientia (Basel) 14, 249 (1958).

  23. Herken, H., D. Maibauer u. F. Weygand: Stoffwechsel und Ausscheidung von m-Inosit. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 233, 301 (1958).

  24. — u. H. v. Stuckrad: Die Störungen der Nierenfunktion nach Einwirkung von Aminonucleosid. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 240, 394 (1961a).

  25. — Der Einfluß von Aminonucleosid auf die tubuläre Rückgewinnung von Natriumionen. Klin. Wschr. 39, 1159 (1961b).

  26. Hokin, L. E., and M. R. Hokin: Phosphoinositides and protein secretion in pancreas slices. J. biol. Chem. 233, 805 (1958).

  27. — Acetylcholine and the exchange of inositol and phosphate in brain phosphoinositide. J. biol. Chem. 233, 818 (1958).

  28. — Evidence for phosphatidic acid as the sodium carrier. Nature (Lond.) 184, 1068 (1959).

  29. — Phosphatidic acid metabolism and active transport of sodium. Fed. Proc. 22, 8 (1963).

  30. Imai, Y.: Biosynthesis of myo-inositol in the rat. J. Biochem. (Tokyo) 53, 50 (1963).

  31. Järnefelt, J.: Properties and possible mechanism of the Na+ and K+-stimulated microsomal adenosinetriphosphatase. Biochim. biophys. Acta (Amst.) 59, 643 (1962).

  32. Kalckar, H. M.: Inhibitory effect of phloridzin on an enzymic dismutation. Nature (Lond.) 136, 872 (1935).

  33. Kaplan, N. O. and D. M. Greenberg: Studies with radioactive phosphorus of the changes in the acid-soluble phosphates in the liver coincident to alterations in carbohydrate metabolism II. The effect of glucose, insulin, and of certain metabolic inhibitors. J. biol. Chem. 156, 525 (1944).

  34. Kennedy, E. P.: Synthesis of phosphatides in isolated mitochondria. J. biol. Chem. 201, 399 (1953).

  35. — Metabolism of lipides. Ann. Rev. Biochem. 26, 119 (1957).

  36. -- Die Stoffwechselfunktion der Cytidin-Coenzyme 11. Mosbacher Kolloqu. der Gesellsch. f. Physiol. Chem. 1960, S. 62.

  37. Kessner, D. M., B. A. Borowsky, and L. Recant: Effect of 6-dimethylaminopurine-3-amino-d-ribose on adenosine triphosphate formation in yeast. Proc. Soc. exp. Biol. (N.Y.) 98, 766 (1958).

  38. Laris, P. C., G. Novinger, and J. Calaprice: Phloretin, phloridzin and glucose inhibition of a phosphatase on the stromata of rabbit erythrocytes. J. cell. comp. Physiol. 55, 127 (1961).

  39. Lehninger, A. L., u. M. Schneider: Wirkung von Phloridzin auf Mitochondrien. Hoppe-Seylers Z. physiol. Chem. 313, 138 (1959).

  40. Liljestrand, A., and E. Lundsgaard: Utilisation of glucose and phosphate metabolism in hind limb preparations of cats poisoned with phlorizin. Skand. Arch. Physiol. 83, 121 (1939).

  41. Loewus, F. A., and S. Kelly: Conversion of glucose to inositol in parsley leaves. Biochem. biophys. Res. Commun. 7, 204 (1962).

  42. Lotspeich, W. D., and D. M. Keller: A study of some effects of phlorizin on the metabolism of kidney tissue in vitro. J. biol. Chem. 222, 843 (1956).

  43. —, and S. Woronkow: Some quantitative studies on phlorizin inhibition of glucose transport in the kidney. Amer. J. Physiol. 195, 331 (1958).

  44. Lowry, O. H., N. R. Roberts, K. Y. Leiner, M. L. Wu, and A. L. Farr: The quantitative histochemistry of brain. I. Chemical methods. J. biol. Chem. 207, 1 (1954).

  45. Marinetti, G. V., J. Erbland, M. Albrecht, and E. Stotz: The application of chromatographic methods to study the incorporation of 32P-labelled orthophosphate into the phosphatides of rat liver homogenates. Biochim. biophys. Acta (Amst.) 25, 585 (1957).

  46. McMurray, W. C., K. P. Strickland, J. F. Berry, and R. J. Rossitter: Incorporation of 32P-labelled intermediates into the phospholipids of cell free preparations of rat brain. Biochem. J. 66, 634 (1957).

  47. Nagai, K.: Tubular reabsorption of glucose and its relation to mitochondria. Med. J. Osaka Univ. 6, 907 (1956).

  48. Nemer, M. J., and D. Elwyn: The conversion of serine to ethanolamine and its derivatives in the rat. J. biol. Chem. 235, 2070 (1960).

  49. Parnas, J. K., W. Mejbaum et B. Sobcznk: Le mecanisme de l'action de la phlorhizine sur la glycogénolyse musculaire. C. R. Soc. Biol. (Paris) 122, 1148 (1936).

  50. Pitts, R. F., and R. S. Alexander: The renal reabsorptive mechanism for inorganic phosphate in normal and acidotic dogs. Amer. J. Physiol. 142, 648 (1944).

  51. Post, R. L., and C. D. Albright: Membrane adenosine triphosphatase system as a part of a system for active sodium and potassium transport. In Kleinzeller-Kotyk: Membrane transport and metabolism. Prag 1961.

  52. Rapoport, S., N. Nelson, G. Guest, and I. A. Mirsky: The turnover of acid-soluble phosphorus in the kidneys of rats. Science 93, 88 (1941).

  53. Robinson, N., and B. M. Philipps: Quantitative thin layer chromatography of serum phospholipids. Clin. chim. Acta 8, 385 (1963).

  54. Skipski, V. P., R. F. Peterson, and M. Barclay: Separation of phosphatidyl ethanolamine, phosphatidyl serine, and other phospholipids by thin-layer chromatography. Lipid Res. 3, 467 (1962).

  55. Skou, J. C.: The relationship of a (Mg2++Na+)-activated, K+-stimulated enzyme or enzyme system to the active, linked transport of Na+ and K+ across the cell membrane. In Kleinzeller-Kotyk: Membrane transport and metabolism. Prag 1961.

  56. Weissberger, L. H.: Phosphorus metabolism in phlorrhizin diabetes, with radioactive phosphorus as an indicator. J. biol. Chem. 139, 543 (1941).

  57. Wetzel, R., u. C. Meadows: Phlorrhizin und Zellatmung. I. Mitt.: Über den Einfluß des Phlorrhizins auf die Atmung des Lebergewebes. Naunyn-Schmiedebergs Arch. exp. Path. Pharmak. 187, 192 (1937).

  58. Woolley, D. W.: A method for the determination of inositol. J. biol. Chem. 140, 453 (1941).

Download references

Author information

Additional information

Herrn Professor Dr. O. Krayer zum 65. Geburtstag gewidmet.

Mit 4 Textabbildungen

Rights and permissions

Reprints and Permissions

About this article

Cite this article

von Bruchhausen, F. Über den Einfluß von Phlorrhizin und Aminonucleosid auf den Phosphateinbau in Leber- und Nierenphosphatide. Naunyn - Schmiedebergs Arch 249, 21–34 (1964). https://doi.org/10.1007/BF00246366

Download citation