Advertisement

Archives of Microbiology

, Volume 156, Issue 6, pp 501–506 | Cite as

Osmotically-regulated trehalose accumulation and cyclic β-(1,2)-glucan excretion by Rhizobium leguminosarum biovar trifolii TA-1

  • Michaël W. Breedveld
  • Ludovicus P. T. M. Zevenhuizen
  • Alexander J. B. Zehnder
Original Papers

Abstract

Rhizobium leguminosarum biovar trifolii TA-1 produced high molecular weight extracellular (EPS) and capsular polysaccharides (CPS) as the main carbohydrate products in a medium (10 g of mannitol and 1 g of glutamic acid per liter) with low osmotic pressure of 0.20 MPa. By increasing the osmotic pressure of the medium with the addition of NaCl or other osmolytes up to 1.44 MPa, the synthesis of EPS and CPS was suppressed. Cyclic β-(1,2)-glucans were excreted instead. Concentrations of over 1500 mg of glucans/l medium were produced by a biomass of 520 mg protein at 200 mM NaCl (1.20 MPa). Intracellular cyclic β-(1,2)-glucan concentrations remained at 45 to 100 mg/g protein during the stationary phase, independent of the osmotic strength of the medium. Parallel to the increasing osmotic pressure of the medium, the disaccharide trehalose accumulated in the cells as osmo-protectant. Concentrations of up to 130 mg/g protein were reached. Strain TA-1 could tolerate 350 mM NaCl.

Key words

Osmotic pressure Osmoregulants Cyclic β-(1,2)-glucans Extracellular polysaccharides Capsular polysaccharides Trehalose Rhizobium leguminosarum biovar trifolii 

Abbreviations

CPS

capsular polysaccharide

EPS

extracellular polysaccharide

LMr

low molecular weight

HMr

high molecular weight

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abe M, Amemura A, Higashi A (1982) Studies on cyclic β-(1,2)-glucan obtained from the periplasmic space of Rhizobium trifolii cells. Plant Soil 64:315–324CrossRefGoogle Scholar
  2. Amemura A, Hisamatsu M, Mitani H (1983) Cyclic (1,2)-β-d-glucan and the octasaccharide repeating units of extracellular acidic polysaccharides produced by Rhizobium. Carbohydr Res 114:277–285CrossRefGoogle Scholar
  3. Amemura A, Footrakul P, Koizumi K, Utamura T, Taguchi H (1985) Isolation of (1,2)-β-d-glucans from tropical strains of Rhizobium and determination of their degrees of polymerization. J Ferment Technol 63:115–120Google Scholar
  4. Blakeney AB, Harris PJ, Henry RJ, Stone BA (1983) A simple and rapid preparation of alditol-acetates for monosacharide analysis. Carbohydr Res 113:291–299CrossRefGoogle Scholar
  5. Blumenkrantz M, Asboe-Hansen O (1973) New method for the quantitative determination of uronic acids. Anal Biochem 54:484–489CrossRefGoogle Scholar
  6. Botsford JL (1984) Osmoregulation in Rhizobium meliloti: inhibition of growth by salts. Arch Microbiol 137:124–127CrossRefGoogle Scholar
  7. Breedveld MW, Zevenhuizen LPTM, Zehnder AJB (1990a) Excessive excretion of cyclic β-(1,2)-glucan by Rhizobium trifolii TA-1. Appl Environ Microbiol 56:2080–2086PubMedPubMedCentralGoogle Scholar
  8. Breedveld MW, Zevenhuizen LPTM, Zehnder AJB (1990b) Osmotically-induced oligo- and polysaccharide synthesis by Rhizobium meliloti SU-47. J Gen Microbiol 136:2511–2519CrossRefGoogle Scholar
  9. Burton RM (1957) The determination of glycerol and dihydroxyacetone. In: Colowick SP, Kaplan NO (eds) Methods in enzymology, part III. Academic Press, New York, pp 246–249CrossRefGoogle Scholar
  10. Chang JC (1988) Solubility product constants. In: Weast RC (ed) Handbook of chemistry and physics, 1st (edn). CRC Press, Boca Raton, Florida, p B-106Google Scholar
  11. Chang R (1977) Physical chemistry with applications to biological systems. McMillan, New York, pp 277–282Google Scholar
  12. Dylan T, Helinski DR, Ditta GS (1990) Hypoosmotic adaptation in Rhizobium meliloti requires β-(1,2)-glucan. J Bacteriol 172:1400–1408CrossRefGoogle Scholar
  13. Harris PJ, Henry RJ, Blakeney AB, Stone BA (1984) An improved procedure for the methylation analysis of oligosaccharides and polysaccharides. Carbohydr Res 127:59–73CrossRefGoogle Scholar
  14. Hestrin S (1949) The reaction of acetylcholine and other carboxylic acid derivatives with hydroxylamine, and its analytical applications. J Biol Chem 180:249–261PubMedGoogle Scholar
  15. Hoelzle I, Streeter JG (1990) Increased accumulation of trehalose in rhizobia cultured under 1-percent oxygen. Appl Environ Microbiol 56:3213–3215PubMedPubMedCentralGoogle Scholar
  16. Katsuki H, Yoshida T, Tanegashima C, Tanaka S (1971) Improved method for determination of the keto acids by 2,4-dinitrophenylhydrazine. Anal Biochem 43:349–356CrossRefGoogle Scholar
  17. Lowry OH, Rosebrough AL, Farr RJ, Randall RJ (1951) Protein measurements with the Folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  18. Miller KJ, Kennedy EP, Reinhold VN (1986) Osmotic adaptation by Gram-negative bacteria: possible role for periplasmic oligosaccharides. Science 231:48–51CrossRefGoogle Scholar
  19. Streeter JG (1985) Accumulation of α-α-trehalose by Rhizobium bacteria and bacteroids. J Bacteriol 164:78–84PubMedPubMedCentralGoogle Scholar
  20. Trevelyan WE, Harrison JS (1952) Studies on yeast metabolism I. Fractionation and microdetermination of cell carbohydrates. Biochem J 50:298–310CrossRefGoogle Scholar
  21. Vincent JM (1974) Root-nodule symbiosis with Rhizobium. In: Quispel A (ed) The biology of nitrogen fixation. North Holland Publishing Company, Amsterdam, pp 265–342Google Scholar
  22. Wiemken A (1990) Trehalose in yeast, stress protectant rather than reserve carbohydrate. Antonie van Leeuwenhoek 58:208–217CrossRefGoogle Scholar
  23. Zevenhuizen LPTM (1981) Cellular glycogen, β-(1,2)-glucan, poly-β-hydroxybutyric acid and extracellular polysaccharides in fast growing species of Rhizobium. Antonie van Leeuwenhoek 47:81–497CrossRefGoogle Scholar
  24. Zevenhuizen LPTM, Van Neerven ARW (1983) (1,2)-β-d-glucan and acidic oligosaccharides produced by Rhizobium meliloti. Carbohydr Res 118:127–134CrossRefGoogle Scholar
  25. Zevenhuizen LPTM (1984) Gel-forming capsular polysaccharide of fast-growing bacteria: occurrence and rheological properties. Appl Microbiol Biotechnol 20:393–399CrossRefGoogle Scholar
  26. Zevenhuizen LPTM (1986) Selective synthesis of polysaccharides by Rhizobium trifolii strain TA-1. FEMS Microbiol Lett 35:43–47CrossRefGoogle Scholar
  27. Zevenhuizen LPTM, Bertocchi C (1989) Polysaccharides production by Rhizobium phaseoli and the typing of their excreted anionic polysaccharides. FEMS Microbiol Lett 65:211–218CrossRefGoogle Scholar
  28. Zevenhuizen LPTM, Van Veldhuizen A, Fokkens RH (1990) Reexamination of cellular β-(1,2)-glucans of Rhizobiaceae: distribution of ring sizes and degrees of glycerol-1-phosphate substitution. Antonie van Leeuwenhoek 57:173–178CrossRefGoogle Scholar
  29. Zorreguieta A, Cavaignac S, Geremia RA, Ugalde RA (1990) Osmotic regulation of β-(1,2)-glucan synthesis in members of the family Rhizobiaceae. J Bacteriol 172:4701–4704CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1991

Authors and Affiliations

  • Michaël W. Breedveld
    • 1
  • Ludovicus P. T. M. Zevenhuizen
    • 1
  • Alexander J. B. Zehnder
    • 1
  1. 1.Department of MicrobiologyAgricultural UniversityWageningenThe Netherlands

Personalised recommendations