Advertisement

Archives of Microbiology

, Volume 157, Issue 2, pp 155–160 | Cite as

Autotrophic growth and inorganic sulphur compound oxidation by Sulfolobus sp. in chemostat culture

  • A. Nixon
  • P. R. Norris
Original Papers
  • 85 Downloads

Abstract

Sulfolobus strain LM was grown in tetrathionate and thiosulphate-limited continuous culture. CO2 limitation resulted in a decrease of the steady-state biomass and an increase in the specific rate of thiosulphate oxidation so that substrate did not accumulate in the medium. The initial step in thiosulphate utilization appeared to be its conversion to tetrathionate. The affinity for tetrathionate oxidation appeared to increase with prolonged continuous culture giving an apparent Km of about 6 μM tetrathionate, a higher affinity than for thiosulphate oxidation and in the same range as values observed with acidophilic, sulphur-oxidizing eubacteria.

Key words

Sulfolobus Chemostat culture Thiosulphate oxidation Tetrathionate oxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boogerd FC, Bos P, Kuenen JG, Heijnen JJ, Lans RGJM van der (1990) Oxygen and carbon dioxide mass transfer and the aerobic, autotrophic cultivation of moderate and extreme thermophiles: a case study related to the microbial desulfurization of coal. Biotechnol Bioeng 35: 1111–1119CrossRefGoogle Scholar
  2. Brock TD, Brock KM, Belly RT, Weiss RL (1972) Sulfolobus: a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84: 54–68CrossRefGoogle Scholar
  3. Buckingham JA, Stanbury PF, LeRoux NW (1989) Effect of molybdenum on the efficiency of tetrathionate utilisation by chemostat cultures of Sulfolobus BC. Biotechnol Lett 11: 99–104CrossRefGoogle Scholar
  4. Eccleston M, Kelly DP (1978) Oxidation kinetics and chemostat growth kinetics of Thiobacillus ferrooxidans on tetrathionate and thiosulphate. J Bacteriol 134: 718–727PubMedPubMedCentralGoogle Scholar
  5. Emmel T, Sand W, Konig WA, Bock E (1986) Evidence for the existence of a sulphur oxygenase in Sulfolobus brierleyi. J Gen Microbiol 132: 3415–3420Google Scholar
  6. Hazeu W, Bijleveld W, Grotenhuis JTC, Kakes E, Kuenen JG (1986) Kinetics and energetics of reduced sulfur oxidation by chemostat cultures of Thiobacillus ferrooxidans. Antonie van Leeuwenhoek 52: 507–518CrossRefGoogle Scholar
  7. Huber G, Spinnler C, Gambacorta A, Stetter KO (1989) Metallosphaera sedula gen. and sp. nov. represents a new genus of aerobic, metal-mobilizing, thermoacidophilic archaebacteria. Syst Appl Microbiol 12: 38–47CrossRefGoogle Scholar
  8. Javor BJ, Wilmot DB and Vetter RD (1990) pH-Dependent metabolism of thiosulfate and sulfur globules in the chemolithotrophic marine bacterium Thiomicrospira crunogena. Arch Microbiol 154: 231–238CrossRefGoogle Scholar
  9. Karavaiko GI, Golovacheva RS, Pivovarova TA, Tzaplina IA, Vartanjan NS (1988) Thermophilic bacteria of the genus Sulfobacillus. In: Norris PR, Kelly DP (eds) Biohydrometallurgy. Symposium Proceedings. Science and Technology Letters, Kew, Surrey, UK, pp 29–41Google Scholar
  10. Kelly DP (1982) Biochemistry of the chemolithotrophic oxidation of inorganic sulphur. Philos Trans R Soc Lond [Biol] 298: 499–528CrossRefGoogle Scholar
  11. Kelly DP (1988) Oxidation of sulphur compounds. In: Cole JA, Ferguson SJ (eds) The nitrogen and sulphur cycles. Cambridge University Press, Cambridge, pp 65–98Google Scholar
  12. Kelly DP (1989) Physiology and biochemistry of unicellular sulfur bacteria. In: Schlegel HG, Bowien B (eds) Autotrophic bacteria. Science Tech Publishers, Madison, pp 193–217Google Scholar
  13. Kelly DP, Chambers LA, Trudinger PA (1969) Cyanolysis and spectro-photometric estimation of trithionate in mixture with thiosulfate and tetrathionate. Anal Chem 41: 898–901CrossRefGoogle Scholar
  14. Kelly DP, Mason J, Wood AP (1986) Energy metabolism in chemolithotrophs. In: Verseveld H van, Duine JA (eds) Microbial growth on C1 compounds. Martinus Nijhoff Publishers, Dordrecht, pp 186–194Google Scholar
  15. Kletzin A (1989) Coupled enzymatic production of sulfite, thiosulfate and hydrogen sulfide from sulfur: purification and properties of a sulfur oxygenase reductase from the facultatively anaerobic archaebacterium Desulfurolobus ambivalens. J Bacterial 171: 1638–1643CrossRefGoogle Scholar
  16. Lu W-P, Kelly DP (1983) Purification and some properties of two principal enzymes of the thiosulphate-oxidizing multienzyme system from Thiobacillus A2. J Gen Microbiol 129: 3549–3564Google Scholar
  17. Lu W-P, Kelly DP (1988) Kinetic and energetic aspects of inorganic sulphur compound oxidation by Thiobacillus tepidarius. J Gen Microbiol 134: 865–876Google Scholar
  18. Marsh RM, Norris PR, LeRoux NW (1983) Growth and mineral oxidation studies with Sulfolobus. In: Rossi G, Torma AE (eds) Recent progress in biohydrometallurgy. Associazione Mineraria Sarda, Iglesias, pp 71–81Google Scholar
  19. Norris PR, Marsh RM, Lindstrom EB (1986) Growth of mesophilic and thermophilic acidophilic bacteria on sulfur and tetrathionate. Biotech Appl Biochem 8: 318–329Google Scholar
  20. Norris P, Nixon A, Hart A (1989) Acidophilic, mineral-oxidizing bacteria: the utilization of carbon dioxide with particular reference to autotrophy in Sulfolobus. In: Costa MS da, Duarte JC, Williams RAD (eds) Microbiology of extreme enviroments and its potential for biotechnology. Elsevier Science Publishers, Barking, pp 24–43Google Scholar
  21. Pronk JT, Meulenberg R, Hazeu W, Bos P, Kuenen JG (1990) Oxidation of reduced inorganic sulphur compounds by acidophilic thiobacilli. FEMS Microbiol Rev 75: 293–306CrossRefGoogle Scholar
  22. Shivvers DW, Brock TD (1973) Oxidation of elemental sulfur by Sulfolobus acidocaldarius. J Bacteriol 114: 706–710PubMedPubMedCentralGoogle Scholar
  23. Stephen H, Stephen T (1963) Solubilities of inorganic and organic compounds. Pergamon Press, OxfordGoogle Scholar
  24. Vishniac W (1952) The metabolism of Thiobacillus thioparus. I. The oxidation of thiosulfate. J Bacteriol 64: 363–373PubMedPubMedCentralGoogle Scholar
  25. Wood AP, Kelly DP, Norris PR (1987) Autotrophic growth of four Sulfolobus strains on tetrathionate and the effect of organic nutrients. Arch Microbiol 146: 382–389CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1992

Authors and Affiliations

  • A. Nixon
    • 1
  • P. R. Norris
    • 1
  1. 1.Department of Biological SciencesUniversity of WarwickCoventryUK

Personalised recommendations