Archives of Microbiology

, Volume 154, Issue 5, pp 433–437 | Cite as

The lipopolysaccharides of Rhodospirillum rubrum, Rhodospirillum molischianum, and Rhodopila globiformis

  • Klaus Pietsch
  • Jürgen Weckesser
  • Ulrich Fischer
  • Hubert Mayer
Original Papers


The cell wall lipopolysaccharides from three phototrophic species of the alpha1-group of Proteobacteria, Rhodospirillum rubrum, Rhodospirillum molischianum, and Rhodopila globiformis were isolated and chemically characterized. Sodium deoxycholate polyacrylamide gel electrophoresis patterns revealed that the lipopolysaccharides of all three species possess O-chains. They are composed of repeating units only in R. molischianum and R. globiformis. The presence of l-glycero-d-mannoheptose and 2-keto-3-deoxyoctonate indicated core structures in all three lipopolysaccharides. Glucosamine was found as backbone amino sugar in lipid A of R. molischianum and R. rubrum, while R. globiformis has 2,3-diaminoglucose as backbone amino sugar. The latter species also differed from the two former ones in its content of hydroxy fatty acids (3-OH-14:0, 3-OH-16:0 in R. rubrum and R. molischianum and 3-OH-14:0, 3-OH-18:0 and 3-OH-19:0 (possibly iso- or anteisobranched) in R. globiformis).

Key words

Rhodospirillum rubrum Rhodospirillum molischianum Rhodopila globiformis Lipopolysaccharide Lipid A 2,3-Diamino-glucose 



sodium deoxycholate polyacrylamide gel electrophoresis


combined gas-liquid chromatography/mass spectrometry




Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Brade H, Galanos C (1983) A method to detect 2-keto-3-deoxyoctonate and related compounds on pherograms and chromatograms. Anal Biochem 132:158–159CrossRefGoogle Scholar
  2. Brooks JL, Benson AA (1972) Studies on the structure of an ornithine-containing lipid from Rhodospirillum rubrum. Arch Biochem Biophys 152:347–355CrossRefGoogle Scholar
  3. Choma A, Russa R, Mayer H, Lorkiewicz Z (1987) Chemical analyses of Azospirillum lipopolysaccharides. Arch Microbiol 146: 341–345CrossRefGoogle Scholar
  4. Depinto JA (1967) Ornithine-containing lipid in Rhodospirillum rubrum. Biochim Biophys Acta 144:113–117CrossRefGoogle Scholar
  5. Drews G (1965) Die Isolierung schwefelfreier Purpurbakterien. Zentralbl Bakteriol Mikrobiol Hyg [B] 1 [Suppl]: 170–178Google Scholar
  6. Hitchcock PJ, Brown T (1983) Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol 154:269–277PubMedPubMedCentralGoogle Scholar
  7. Hollingsworth RI, Carlson RW (1989) 27-Hydroxyoctacosanoic acid is a major structural fatty acid acyl component of the lipopolysaccharide of Rhizobium trifolii ANU 843. J Biol Chem 264:9300–9303PubMedGoogle Scholar
  8. Holst O, Weckesser J, Mayer H (1983) Co-extraction of lipopolysaccharide and an ornithine-containing lipid from Rhodomicrobium vannielii. FEMS Microbiol Lett 19:33–36CrossRefGoogle Scholar
  9. Jann K, Jann B (1984) Structure and biosynthesis of O antigens. In: Rietschel ETh (ed) Handbook of endotoxin. Elsevier, Amsterdam, pp 138–186Google Scholar
  10. Komuro T, Galanos C (1988) Analysis of Salmonella lipopolysaccharides by sodium deoxycholate-polyacrylamide gel electrophoresis. J Chromatogr 450:381–387CrossRefGoogle Scholar
  11. Krauss JH, Weckesser J, Mayer H (1988) Electrophoretic analysis of lipopolysaccharides of purple nonsulfur bacteria. Int J Syst Bacteriol 38:157–163CrossRefGoogle Scholar
  12. Lowry OH, Roberts NR, Leiner KY, Wu ML, Farr AL (1954) The quantitative histochemistry of brain. J Biol Chem 207:1–17Google Scholar
  13. Lüderitz O, Freudenberg MA, Galanos C, Lehmann V, Rietschel ETh, Shaw DH (1982) Lipopolysaccharides of Gram-negative bacteria. Curr Top Membr Transp 17:79–151CrossRefGoogle Scholar
  14. Mayer H, Weckesser J (1984) “Unusual” lipid A's: structures, taxonomical relevance and potential value for endotoxin research. In: Rietschel ETh (ed) Handbook of endotoxin, vol. 1. Chemistry of endotoxin. Elsevier, Amsterdam, pp 221–247Google Scholar
  15. Mayer H, Bhat UR, Masoud H, Radziejewska-Lebrecht J, Widemann C, Krauss JH (1989a) Bacterial lipopolysaccharides. Pure Appl Chem 61:1271–1282CrossRefGoogle Scholar
  16. Mayer H, Masoud H, Urbanik-Sypniewska T, Weckesser J (1989b) Lipid A composition and phylogeny of Gram-negative bacteria. Bull Jpn Fed Culture Collect 5:19–25Google Scholar
  17. Niedermeier W, Tomana M (1974) Gas chromatographic analysis of hexosamines in glycoproteins. Anal Biochem 57:363–368CrossRefGoogle Scholar
  18. Palva ET, Mäkelä HP (1980) Lipopolysaccharide heterogeneity in Salmonella typhimurium analyzed by sodium dodecyl sulfate/polyacrylamide gel electrophoresis. Eur J Biochem 107:137–143CrossRefGoogle Scholar
  19. Roppel J, Mayer H, Weckesser J (1975) Identification of a 2,3-diamino-2,3-dideoxyhexose in the lipid A component of lipopolysaccharides of Rhodopseudomonas viridis and Rhodopseudomonas palustris. Carbohydr Res 40:31–40CrossRefGoogle Scholar
  20. Sawardeker JS, Sloneker JH, Jeanes A (1967) Quantitative determination of monosaccharides as their alditol acetates by gas liquid chromatography. Anal Chem 37:1602–1604CrossRefGoogle Scholar
  21. Sleytr UB, Messner P (1983) Crystalline surface layers of bacteria. Annu Rev Microbiol 37:311–319CrossRefGoogle Scholar
  22. Stackebrandt E, Embley M, Weckesser J (1988) Phylogenetic, evolutionary, and taxonomic aspects of phototrophic eubacteria. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E, Trüper HG (eds) Green photosynthetic bacteria. Plenum Press, New York, pp 201–215CrossRefGoogle Scholar
  23. Then J, Trüper HG (1981) The role of thiosulfate in sulfur metabolism of Rhodopseudomonas globiformis. Arch Microbiol 130:143–146CrossRefGoogle Scholar
  24. Tsai CM, Frasch CE (1982) A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119:115–119CrossRefGoogle Scholar
  25. Warawdekar VS, Saslaw LD (1959) A sensitive method for the estimation of 2-deoxy sugar with the use of the thiobarbituric acid reaction. J Biol Chem 234:1945–1950Google Scholar
  26. Weckesser J, Drews G, Roppel J, Mayer H, Fromme I (1974) The lipopolysaccharides (O-antigens) of Rhodopseudomonas viridis. Arch Microbiol 171:233–245CrossRefGoogle Scholar
  27. Weckesser J, Mayer H, Metz E, Biebl H (1983) Lipopolysaccharide of Rhodocyclus purpureus: taxonomic implication. Int J Syst Bacteriol 33:3–56CrossRefGoogle Scholar
  28. Weckesser J, Mayer H (1988) Different lipid A types in lipopolysaccharides of phototrophic and related non-phototrophic bacteria. FEMS Microbiol Lett 54:143–154CrossRefGoogle Scholar
  29. Westphal O, Lüderitz O, Bister F (1952) Über die Extraktion von Bakterien mit Phenol/Wasser. Z Naturforsch 7b:148–155CrossRefGoogle Scholar
  30. Woese CR (1987) Bacterial evolution. Microbiol Rev 51:221–271PubMedPubMedCentralGoogle Scholar
  31. Woese CR, Stackebrandt E, Weisburg WG, Pasteur BJ, Madigan MT, Fowler VJ, Hahn CM, Blanz P, Gupta R, Nealson KH, Fox GE (1975) The phylogeny of purple bacteria: the alphasubdivision. System Appl Microbiol 5:315–326CrossRefGoogle Scholar
  32. Wollenweber HW, Seydel U, Lindner B, Lüderitz O, Rietschel ETh (1984) Nature and location of amide-bound (R)-3-acyloxyacyl groups in lipid A of lipopolysaccharides from Gram-negative bacteria. Eur J Biochem 145:265–272CrossRefGoogle Scholar
  33. Yao K, Ubuka T, Musuoka N, Kinuta M, Ikeda T (1989) Direct determination of bound sialic acids in sialoglycoproteins by acidic ninhydrin reaction. Anal Biochem 179:332–333CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Klaus Pietsch
    • 1
  • Jürgen Weckesser
    • 2
  • Ulrich Fischer
    • 3
  • Hubert Mayer
    • 1
  1. 1.Max-Planck-Institut für ImmunbiologieFreiburg i. Br.Germany
  2. 2.Institut für Biologie II, MikrobiologieAlbert-Ludwigs-UniversitätFreiburg i. Br.Germany
  3. 3.Fachbereich Biologie, AG GeomikrobiologieUniversität OldenburgOldenburgGermany

Personalised recommendations