Advertisement

Archives of Microbiology

, Volume 154, Issue 5, pp 428–432 | Cite as

Nickel availability and urease expression in Proteus mirabilis

  • Domenico Rando
  • Ursula Steglitz
  • Gerhard Mörsdorf
  • Heinrich Kaltwasser
Original Papers

Abstract

Cells of Proteus mirabilis, previously grown in nutrient broth (NB), exhibited an increase in urease activity during subsequent incubation in mineral medium even when protein biosynthesis was inhibited. During growth in NB, degradation of amino acids obviously led to the formation of nickel-complexing metabolites, and nickel ions were therefore inavailable for maximal expression of enzymatically active urease; this inhibition of urcase biosynthesis was overcome by the addition of nickel to the growth medium, and also by added glucose. Experiments concerning the incorporation of radioactive nickel into urease finally indicated that the observed increase in urease activity was caused by posttranslational insertion of nickel into preformed apourease.

Key words

Nickel insertion Urease Proteus mirabilis 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bast e (1988) Nickel requirement for the formation of active urease in purple sulfur bacteria (Chromatiaceae). Arch Microbiol 150:6–10CrossRefGoogle Scholar
  2. Bender RA, Janssen KA, Resnick AD, Blumenberg M, Foor F, Magasanik B (1977) Biochemical parameters of glutamine synthetase from Klebsiella aerogenes. J Bacteriol 129:1001–1009PubMedPubMedCentralGoogle Scholar
  3. Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254CrossRefGoogle Scholar
  4. Chaney AL, Marbach EP (1962) Modified reagents for determination of urea and ammonia. Clin Chem 8:130–132PubMedGoogle Scholar
  5. Chan YK, Marshall PR (1987) Strain-dependent inhibition of nitrous oxide reduction in denitrifiers by yeast extract. Can J Microbiol 33:1032–1037CrossRefGoogle Scholar
  6. Charles IG, Harford S, Brookfield JFY, Shaw WV (1985) Resistance to chloramphenicol in Proteus mirabilis by expression of a chromosomal gene for chloramphenicol acetyltransferase. J Bacteriol 164:114–122PubMedPubMedCentralGoogle Scholar
  7. Chen YP, Yoch DE (1987) Regulation of two nickel-requiring (inducible and constitutive) hydrogenases and their coupling to nitrogenase in Methylosinus trichosporium OB3b. J Bacteriol 169:4778–4783CrossRefGoogle Scholar
  8. Claus D, Lack P, Neu B (1983) Deutsche Sammlung von Mikroorganismen. Catalogue of strains 1983, third edition. Gesellschaft für Biotechnologische Forschung mbH, Braunschweig, FRGGoogle Scholar
  9. Diekert GB, Graf EG, Thauer RK (1979) Nickel requirement for carbon monoxide dehydrogenase formation in Clostridium pasteurianum. Arch Microbiol 122:117–120CrossRefGoogle Scholar
  10. Dixon NE, Gazzola C, Blakeley RL, Zerner B (1975) Jack bean urease (EC 3.5.1.5). A metalloenzyme. A simple biological role for nickel? J Am Chem Soc 97:4131–4133CrossRefGoogle Scholar
  11. Friedrich CG, Schneider K, Friedrich B (1982) Nickel in the catalytically active hydrogenase of Alcaligenes eutrophus. J Bacteriol 152:42–48PubMedPubMedCentralGoogle Scholar
  12. Friedrich CG, Suetin S, Lohmeyer M (1984) Nickel and iron incorporation into soluble hydrogenase of Alcaligenes eutrophus. Arch Microbiol 140:206–211CrossRefGoogle Scholar
  13. Joho M, Imada Y, Tohoyama H, Murayama T (1988) Changes in the amino acid pool in a nickel-resistant strain of Saccharomyces cerevisiae. FEMS Microbiol Lett 55:137–140CrossRefGoogle Scholar
  14. Lee MH, Mulrooney SB, Hausinger RP (1990) Purification, characterization, and in vivo reconstitution of Klebsiella aerogenes urease apo-enzyme. Abstr Ann Meet ASM:231Google Scholar
  15. Lowry OH, Rosebrough NJ, Farr L, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275Google Scholar
  16. Mackerras AN, Smith GD (1986) Urease activity of the cyanobacterium Anabaena cylindrica. J Gen Microbiol 132:2749–2752Google Scholar
  17. Mobley HLT, Hausinger RP (1989) Microbial ureases: significance, regulation, and molecular characterization. Microbiol Rev 53:85–108PubMedPubMedCentralGoogle Scholar
  18. Mörsdorf G, Kaltwasser H (1989) Ammonium assimilation in Proteus vulgaris, Bacillus pasteurii, and Sprosarcina ureae. Arch Microbiol 152:125–131CrossRefGoogle Scholar
  19. Mulrooney SB, Pankratz HS, Hausinger RP (1989) Regulation of gene expression and cellular localization of cloned Klebsiella aerogenes (K. pneumoniae) urease. J Gen Microbiol 135:1769–1776PubMedGoogle Scholar
  20. Nriagu JO (1980) Global cycle and properties of nickel. In: Nriagu JO (ed) Nickel in the environment. John Wiley & Sons, New York Chichester Brisbane, pp 1–27Google Scholar
  21. Oxoid Deutschland GmbH (1983) Handbuch der “Oxoid”-Erzeugnisse für mikrobiologische Zwecke, Wesel, FRGGoogle Scholar
  22. Pérezzuria E, Legaz ME, Vicente C (1986) The function of nickel on the urease activity of the lichen Evernia prunastri. Plant Sci 43:37–43CrossRefGoogle Scholar
  23. Rees TAV, Bekheet IA (1982) The role of nickel in urea assimilation by algae. Planta 156:385–387CrossRefGoogle Scholar
  24. Romano N, Tolone G, LaLicata R, Ajello F (1979) Urease activity of Ureaplasma urealyticum: some properties of the enzyme. Microbiologica 2:357–367Google Scholar
  25. Winkler RG, Polacco JC, Eskew DL, Welch RM (1983) Nickel is not required for apourease synthesis in soybean. Plant Physiol 72:262–263CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1990

Authors and Affiliations

  • Domenico Rando
    • 1
  • Ursula Steglitz
    • 1
  • Gerhard Mörsdorf
    • 1
  • Heinrich Kaltwasser
    • 1
  1. 1.Fachrichtung Mikrobiologie der Universität des SaarlandesSaarbrückenGermany

Personalised recommendations