Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Analysis of enzyme reactions in situ

  • 54 Accesses

  • 33 Citations


Estimations of metabolic rates in cells and tissues and their regulation on the basis of kinetic properties of enzymes in diluted solutions may not be applicable to intact living cells or tissues. Enzymes often behave differently in living cells because of the high cellular protein content that can lead to homologous and heterologous associations of protein molecules. These associations often change the kinetics of enzymes as part of post-translational regulation mechanisms. An overview is given of these interactions between enzyme molecules or between enzyme molecules and structural elements in the cell, such as the cytoskeleton. Biochemical and histochemical methods are discussed that have been developed for in vivo and in situ analyses of enzyme reactions, particularly for the study of effects of molecular interactions. Quantitative (histochemical) analysis of local enzyme reactions or fluxes of metabolites has become increasingly important. At present, it is possible to calculate local concentrations of substrates in cells or tissue compartments and to express local kinetic parameters in units that are directly comparable with those obtained by biochemical assays of enzymes in suspensions. In situ analysis of the activities of a number of enzymes have revealed variations in their kinetic properties (Km and Vmax) in different tissue compartments. This stresses the importance of in vivo or in situ analyses of cellular metabolism. Finally, histochemical determinations of enzyme activity in parallel with immunohistochemistry for the detection of the total number of enzyme molecules and in situ hybridization of its messenger RNA allow the analysis of regulation mechanisms at all levels between transcription of the gene and post-translational activity modulation.

This is a preview of subscription content, log in to check access.


  1. Abadeh, S., Case, P. C. & Harrison, R. (1993) Purification of xanthine oxidase from human heart. Biochem. Soc. Trans. 21, 99s.

  2. Altman, F. P. (1975) Quantitation in histochemistry: a review of some commercially available microdensitometers. Histochem. J. 7, 375–95.

  3. Altman, F. P. (1980) Tissue stabilizer methods in histochemistry. In Trends in Enzyme Histochemistry and Cytochemistry (edited by Evered, D. & O'Connor, M.), pp. 81–101. Amsterdam: Excerpta Medica.

  4. Aragón, J. J. & Sols, A. (1991) Regulation of enzyme activity in the cell: effect of enzyme concentration. FASEB J. 5, 2945–50.

  5. Aragón, J. J., Felíu, J. E., Frenkel, R. A. & Sols, A. (1980) Permeabilization of animal cells for kinetic studies of intracellular enzymes: in situ behavior of the glycolytic enzymes of erythrocytes. Proc. Natl Acad. Sci. USA 77, 6324–8.

  6. Arnold, H. & Pette, D. (1968) Binding of glycolytic enzymes to structure proteins of muscle. Eur. J. Biochem. 6, 163–71.

  7. Arnold, H. & Pette, D. (1970) Binding of aldolase and triosephosphate dehydrogenase to F-actin and modification of catalytic properties of aldolase. Eur. J. Biochem. 15, 360–6.

  8. Assfalg-Machleidt, I., Rothe, G., Klingel, S., Banati, R., Mangel, W. F., Valet, G. & Machleidt, W. (1992) Membrane permeable fluorogenic rhodamine substrates for selective determination of cathepsin L. Biol. Chem. H-S. 373, 433–40.

  9. Baquet, A., Lavoinne, A. & Hue, L. (1991) Comparison of the effects of various amino acids on glycogen synthesis, lipogenesis and ketogenesis in isolated rat hepatocytes. Biochem. J. 273, 57–62.

  10. Baron, J., Voigt, J. M., Kawabata, T. T. & Redick, J. A. (1986) Immunohistochemistry. In Regulation of Hepatic Metabolism. Intra- and Intercellular Compartmentation (edited by Thurman, R. G., Kauffman, F. C. & Jungermann, K.), pp. 87–118. New York: Plenum Press.

  11. Bauldry, S. A., Nasrallah, V. N. & Bass, D. A. (1992) Activation of NADPH oxidase in human neutrophils permeabilized with staphylococcus aureus a-toxin. A lower Km when enzyme is activated in situ. J. Biol. Chem. 267, 323–30.

  12. Belinsky, S. A., Kaufmann, F. C., Ji, S., Lemasters, J. J. & Thurman, R. G. (1981) Stimulation of mixed-function oxidation of 7-ethoxycoumarin in periportal and pericentral regions of the perfused rat liver by xylitol. Eur. J. Biochem. 137, 1–6.

  13. Berteloot, A., Vidal, H. & Van DeWerve, G. (1991) Rapid kinetics of liver microsomal glucose-6-phosphatase. Evidence for tight-coupling between glucose-6-phosphate transport and phosphohydrolase activity. J. Biol. Chem. 266, 5497–507.

  14. Bitensky, L. (1980) Microdensitometry. In Trends in Enzyme Histochemistry and Cytochemistry (edited by Evered, D. & O'Connor, M.), pp. 181–207. Amsterdam: Excerpta Medica.

  15. Blanco, C. E. & Sieck, G. C. (1992) Quantitative determination of calcium-activated myosin adenosine triphosphatase activity in rat skeletal muscle fibres. Histochem. J. 24, 431–44.

  16. Blanco, C. E., Sieck, G. C. & Edgerton, V. R. (1988) Quantitative histochemical determination of succinic dehydrogenase activity in skeletal muscle fibres. Histochem. J. 20, 230–43.

  17. Bosma, H. J., Voordouw, G., DeKok, A. & Veeger, C. (1980) Self-association of the pyruvate dehydrogenase complex from Azotobacter vinelandii in the presence of polyethylene glycol. FEBS Lett. 120, 179–82.

  18. Butcher, R. G. (1970) Studies on succinate oxidation. I. The use of intact tissue sections. Exp. Cell Res. 60, 54–60.

  19. Butcher, R. G. (1971) The chemical determination of section thickness. Histochemie 28, 131–6.

  20. Butcher, R. G. (1972) Precise cytochemical measurement of neotetrazolium formazan by scanning and integrating microdensitometry. Histochemie 32, 171–90.

  21. Butcher, R. G. & VanNoorden, C. J. F. (1985) Reaction rate studies of glucose-6-phosphate dehydrogenase activity in sections of rat liver using four tetrazolium salts. Histochem. J. 17, 993–1008.

  22. Caspersson, T., Lomakka, G. & Svensson, G. (1957) A coordinated set of instruments for optical quantitative high resolution cytochemistry. Exp. Cell Res. (suppl.) 4, 9–24.

  23. Chalmers, G. R. & Edgerton, V. R. (1989) Marked and variable inhibition by chemical fixation of cytochrome oxidase and succinate dehydrogenase in single motoneurons. J. Histochem. Cytochem. 37, 899–901.

  24. Chayen, J. & Bitensky, L. (1991) Practical Histochemistry, 2nd edn. London: John Wiley & Sons.

  25. Cheung, C. W., Cohen, N. S. & Raijman, L. (1989) Channeling of urea cycle intermediates in situ in permeabilized hepatocytes. J. Biol. Chem. 264, 4038–44.

  26. Chieco, P., Jonker, A., Melchiorri, C., Vanni, G. & VanNoorden, C. J. F. (1994) A user's guide for avoiding errors in absorbance image cytometry: a review with original experimental observations. Histochem. J. 26, 1–19.

  27. Clarke, F., Stephan, P., Morton, D. & Weidemann, J. (1983) The role of actin and associated structural proteins in the organisation of glycolytic enzymes. In Actin: Structure and function in Muscle and Non-Muscle Cells (edited by Barden, J. & Dos Remedios, C.), pp. 249–57. New York: Academic Press.

  28. Clarke, F. M., Stephan, P., Huxham, G., Hamilton, D. & Morton, D. J. (1984) Metabolic dependence of glycolytic enzyme binding in rat and sheep heart. Eur. J. Biochem. 138, 643–9.

  29. Clarke, F., Stephan, P., Morton, D. & Weidemann, J. (1985a) Glycolytic enzyme organization via the cytoskeleton and its role in metabolic regulation. In Regulation of Carbohydrate Metabolism (edited by Beitner, R.), pp. 1–31. Boca Raton: CRC Press.

  30. Clarke, F. M., Morton, D. J., Stephan, P. & Weidemann, J. (1985b) The functional duality of glycolytic enzymes: potential integrators of cytoplasmic structure and function. In Cell Motility: Mechanism and Regulation (edited by Ishikawa, H., Hatano, S. & Sato, H.), pp. 235–50. Tokyo: University of Tokyo Press.

  31. Clegg, J. S. (1984) Properties and metabolism of the aqueous cytoplasm and its boundaries. Am. J. Physiol. 246, R133–51.

  32. Cohen, N. S., Cheung, C. W. & Raijman, L. (1987) Channeling of extramitochondrial ornithine to matrix ornithine transcarbamylase. J. Biol. Chem. 262, 203–8.

  33. Cortassa, S., Caceres, A. & Aon, M. A. (1994) Microtubular protein in its polymerized or nonpolymerized states differentially modulates in vitro and intracellular fluxes catalyzed by enzymes or carbon metabolism. J. Cell. Biochem. 55, 120–32.

  34. Cullen, B. M., Halliday, I. M., Kay, G., Nelson, J. & Walker, B. (1992) The application of a novel biotinylated affinity label for the detection of a cathepsin B-like precursor produced by breast-tumour cells in culture. Biochem. J. 283, 461–5.

  35. Dagher, S. M. & Hultin, H. O. (1975) Association of glyceraldehyde-3-phosphate dehydrogenase with the particulate fraction of chicken skeletal muscle. Eur. J. Biochem. 55, 185–92.

  36. Datta, A., Merz, J. M. & Olin Spivey, H. (1985) Substrate channeling of oxalacetate in solid-state complexes of malate dehydrogenase and citrate synthase. J. Biol. Chem. 260, 15 008–12.

  37. Deeley, E. M. (1955) An integrating microdensitometer for biological cells. J. Sci. Instrum. 32, 263–7.

  38. Dolken, G., Leisner, E. & Pette, D. (1975) Immunofluorescent localization of glycogenolytic and glycolytic enzyme proteins and of malate dehydrogenase isozymes in cross-striated skeletal muscle and heart of the rabbit. Histochemistry 43, 113–21.

  39. Fahien, L. A. & Kmiotek, E. (1979) Precipitation of complexes between glutamate dehydrogenase and mitochondrial enzymes. J. Biol. Chem. 254, 5983–90.

  40. Fahien, L. A. & Kmiotek, E. (1983) Complexes between mitochondrial enzymes and either citrate synthase or glutamate dehydrogenase. Arch. Biochem. Biophys. 220, 386–97.

  41. Felix, H. (1982) Permeabilized cells. Anal. Biochem. 120, 211–34.

  42. Frederiks, W. M. & Bosch, K. S. (1993) Quantitative aspects of enzyme histochemistry on sections of freeze-substituted glycol methacrylate-embedded rat liver. Histochemistry 100, 297–302.

  43. Frieden, C. (1970) Kinetic aspects of regulation of metabolic processes. The hysteretic enzyme concept. J. Biol. Chem. 245, 5788–99.

  44. Fritz, P., Multhaupt, H., Koenes, J., Lutz, D., Doerrer, R., Schwarzmann, P. & Tuczek, H. V. (1992) Quantitative histochemistry. Prog. Histochem. Cytochem. 243, 1–57.

  45. Fulton, A. B. (1982) How crowded is the cytoplasm? Cell 30, 345–7.

  46. Furth-Walker, D. & Amy, N. K. (1987) Regulation of xanthine oxidase activity and immunologically detectable protein in rats in response to dietary protein and iron. J. Nutr. 117, 1697–703.

  47. Gall, J. G. & Pardue, M. L. (1969) Formation and detection of RNA-DNA hybrid molecules in cytological preparations. Proc. Natl Acad. Sci. USA 63, 378–83.

  48. Gankema, H. S., Laanen, E., Groen, A. K. & Tager, J. M. (1981) Characterization of isolated rat-liver cells made permeable with filipin. Eur. J. Biochem. 119, 409–14.

  49. Gankema, H. S., Groen, A. K., Wanders, R. J. A. & Tager, J. M. (1983) Measurement of binding of adenine nucleotides and phosphate to cytosolic proteins in permeabilized rat-liver cells. Eur. J. Biochem. 131, 445–51.

  50. Gebhardt, R. (1992) Metabolic zonation of the liver: regulation and implications for liver function. Pharmacol. Therapeut. 53, 275–354.

  51. Gerbhardt, R. & Mecke, D. (1993) Heterogeneous distribution of glutamine sythetase among rat liver parenchymal cells in situ and in primary culture. EMBO J. 2, 567–70.

  52. Glick, D. (1977) The contribution of microchemical methods of histochemistry to the biological sciences. J. Histochem. Cytochem. 25, 1087–101.

  53. Goldstein, D. J. (1981) Errors in microdensitometry. Histochem. J. 13, 251–67.

  54. Gordon, M. & Robertson, W. R. (1986) The application of continuous monitoring microdensitometry to an analysis of NAD+ binding and 3 β-hydroxy-Δ5-steroid dehydrogenase activity in the regressing corpus luteum of the pro-oestrous rat ovary. Histochem. J. 18, 41–4.

  55. Gossrau, R. (1980) Conventional techniques for membrane-bound enzymes. In Trends in Enzyme Histochemistry and Cytochemistry (edited by Evered, D. & O'Connor, M.), pp. 67–80. Amsterdam: Excerpta Medica.

  56. Gossrau, R. & Lojda, Z. (1980) Study on dipeptidylpeptidase II (DPP II). Histochemistry 70, 53–76.

  57. Gowda, L. R., Joshi, M. S. & Bhat, S. G. (1988) In situ assay of intracellular enzymes of yeast (Kluyveromyces fragilis) by digitonin permeabilization of cell membrane. Anal. Biochem. 175, 531–6.

  58. Groen, A. K., Van DerMeer, R., Westerhoff, H. V., Wanders, R. J. A., Akerboom, T. P. M. & Tager, J. M. (1982) Control of metabolic fluxes. In Metabolic Compartmentation (edited by Sies, H.). pp. 9–37. New York: Academic Press.

  59. Gutschmidt, S. (1981) ‘In situ’ determinations of apparent Km and Vmax of brush border disaccharidases along the villi of normal human jejunal biopsy specimens. A quantitative histochemical study. Histochemistry 71, 451–62.

  60. Gutschmidt, S. & Emde, C. (1981) Early changes in brush border disaccharidase kinetics in rat jejunum following subcutaneous administration of tetraiodothyronine. Histochemistry73, 151–60.

  61. Gutschmidt, S. & Gossrau, R. (1981) A quantitative histochemical study of dipeptidylpeptidase IV (DPP IV). Histochemistry 73, 285–304.

  62. Gutschmidt, V. S., Lorenz-Meyer, H., Riecken, E. O. & Menge, H. (1978) Mikrodensitometrische Untersuchungen zur Charakterisierung von Enzymaktivitäten am Gewebsschnitt mittels enzymhistochemischer Farbreaktionen. Acta Histochem. (suppl.) 20, 249–58.

  63. Gutschmidt, S., Kaul, W. & Riecken, E. O. (1979) A quantitative histochemical technique for the characterisation of αglucosidases in the brush-border membrane of rat jejunum. Histochemistry 63, 81–101.

  64. Gutschmidt, S., Lange, U. & Riecken, E. O. (1980) Kinetic characterization of unspecific alkaline phosphatase at different villus sites of rat jejunum. Histochemistry 69, 189–202.

  65. Hardonk, M. J. & Koudstaal, J. (1976) Enzyme histochemistry as a link between biochemistry and morphology. Prog. Histochem. Cytochem. 82, 1–68.

  66. Hartel-Schenk, S., Gossrau, R. & Reutter, W. (1990) Comparative immunohistochemistry and histochemistry of dipeptidyl peptidase IV in rat organs during development. Histochem. J. 22, 567–78.

  67. HÄussinger, D. & Lang, F. (1991) Cell volume in the regulation of hepatic function: a mechanism for metabolic control. Biochim. Biophys. Acta 1071, 331–50.

  68. HÄussinger, D. & Lang, F. (1992) Cell volume and hormone action. TIPS 13, 371–3.

  69. Häussinger, D., Roth, E., Lang, F. & Gerok, W. (1993) Cellular hydration state: an important determinant of protein catabolism in health and disease. Lancet 341, 1330–2.

  70. Henderson, B., Loveridge, N. & Robertson, W. R. (1978) A quantitative study of the effects of different grades of polyvinyl alcohol on the activities of certain enzymes in unfixed tissue sections. Histochem. J. 10, 453–63.

  71. Hevner, R. F. & Wong-Riley, M. T. T. (1989) Brain cytochrome oxidase: purification, antibody production, and immunohistochemical/histochemical correlations in the CNS. J. Neurosci. 9, 3884–90.

  72. Hevner, R. F. & Wong-Riley, M. T. T. (1990) Regulation of cytochrome oxidase protein levels by functional activity in the Macaque monkey visual system. J. Neurosci. 10, 1331–40.

  73. Hildebrand, R. (1984) Quantitative and qualitative histochemical investigation on NADP+-dependent dehydrogenases in the limiting plate and the residual parenchyma surrounding terminal hepatic venules. Histochemistry 80, 91–5.

  74. Hopwood, D. (1985) Cell and tissue fixation, 1972–1982. Histochem. J. 17, 389–442.

  75. Huet, O., Petit, J. M., Ratinaud, M. H. & Julien, R. (1992) NADH-dependent dehydrogenase activity estimation by flow cytometric analysis of 3-(4,5-dimethylthiazoryl-2-yl)-2,5-diphenyltetrazolium bromide (MTT) reduction. Cytometry 13, 532–9.

  76. Hulme, E. C. & Tipton, K. F. (1971) The dependence of phosphofructokinase kinetics upon protein concentration. FEBS Lett. 12, 197–200.

  77. Ishidoh, K., Takedaezaki, M. & Kominami, E. (1993) Procathepsin-L-specific antibodies that recognize procathepsin-L but not cathepsin-L. FEBS Lett. 322, 79–82.

  78. Ji, S., Lemasters, J. J., Christenson, V. & Thurman, R. G. (1982) Periportal and pericentral pyridine nucleotide fluorescence from the surface of perfused livers: evaluation of the hypothesis that chronic treatment with ethanol produces pericentral hypoxia. Proc. Natl Acad. Sci. USA 79, 5415–9.

  79. Johansson, S., Wide, M., Young, E. & Lindblad, P. (1993) Expression of alkaline phosphatase in the mature mouse placenta visualized by in situ hybridization and enzyme histochemistry. Anat. Embryol. 187, 409–14.

  80. John, H. A., Birnstiel, M. L. & Jones, K. W. (1969) RNA-DNA hybrids at the cytological level. Nature 223, 582–7.

  81. Jonges, G. N. & VanNoorden, C. J. F. (1989) In situ kinetic parameters of glucose-6-phosphate dehydrogenase and phosphogluconate dehydrogenase in different areas of the rat liver acinus. Histochem. J. 21, 585–94.

  82. Jonges, G. N., VanNoorden, C. J. F. & Gossrau, R. (1990) Quantitative histochemical analysis of glucose-6-phosphatase activity in rat liver using an optimized ceriumdiaminobenzidine method. J. Histochem. Cytochem. 38, 1413–9.

  83. Jonges, G. N., VanNoorden, C. J. F. & Lamers, W. H. (1992) In situ kinetic parameters of glucose-6-phosphatase in the rat liver lobulus. J. Biol. Chem. 267, 4878–81.

  84. Jonges, G. N., Vogels, I. M. C., Bosch, K. S., Dingemans, K. P. & VanNoorden, C. J. F. (1993) Experimentally induced colon cancer metastases in the rat liver affect the proliferation rate and capacity for purine catabolism in liver cells. Histochemistry 100, 41–51.

  85. Jonges, G. N., Vogels, I. M. C. & Van Noorden, C. J. F. (1994) Effects of partial hepatectomy, phenobarbital and 3-methylcholanthrene on kinetic parameters of glucose-6-phosphate and phosphogluconate dehydrogenase in situ in periportal, intermediate and pericentral zones of rat liver lobules. Biochim. Biophys. Acta (in press).

  86. Jonker, A., Geerts, W. J. C., Charles, R., Lamers, W. H. & Van Noorden, C. J. F. (1995) Image analysis and image processing as a tool to measure initial rates of enzyme reactions throughout the liver lobule with glutamate dehydrogenase as a model system. J. Histochem. Cytochem. 43, in press.

  87. Jungermann, K. & Katz, N. (1989) Functional specialization of different hepatocyte populations. Physiol. Rev. 69, 708–64.

  88. Jungermann, K. & Sasse, D. (1978) Heterogeneity of liver parenchymal cells. Trends Biochem. Sci. 3, 198–202.

  89. Jungermann, K. & Thurman, R. G. (1992) Hepatocyte heterogeneity in the metabolism of carbohydrates. Enzyme 46, 33–58.

  90. Jungermann, K., Heilbronn, R., Katz, N. & Sasse, D. (1982) The glucose/glucose-6-phosphate cycle in the periportal and perivenous zone of rat liver. Eur. J. Biochem. 123, 429–36.

  91. Katz, N. R. (1989) Methods for the study of liver cell heterogeneity. Histochem. J. 21, 517–29.

  92. Kennett, C. N., Cox, S. W. & Eley, B. M. (1994a) Comparative histochemical, biochemical and immunocytochemical studies of cathepsin B in human gingiva. J. Periodont. Res. 29, 201–13.

  93. Kennett, C. N., Cox, S. W. & Eley, B. M. (1994b) Localisation of active and inactive elastase, alpha-1-proteinase inhibitor and alpha-2-macroglobuIin in human gingiva. J. Dent. Res. (in press).

  94. Kohen, E., Thorell, B., Kohen, C. & Michaelis, M. (1973) Rapid microfluorometry for biochemistry of the living cell in correlation with cytomorphology and transport phenomena. In Fluorescence Techniques in Cell Biology (edited by Thaer, A. A. & Sernetz, M.), pp. 219–33. Berlin: Springer Verlag.

  95. Kohen, E., Kohen, C., Salmon, J. M., Bengtsson, G. & Thorell, B. (1974) Rapid microspectrofluorimetry for biochemical and metabolic studies in single living cells. Biochim. Biophys. Acta 263, 575–83.

  96. Kohen, E., Hirschberg, J. G., Kohen, C., Wouters, A., Pearson, A., Salmon, J.-M. & Thorell, B. (1975) Multichannel microspectrophotometry for topographic and spectral analysis of NAD(P)H fluorescence in single living cells. Biochim. Biophys. Acta 396, 149–54.

  97. Kohen, E., Kohen, C., Hirschberg, J. G., Wouters, A. W., Thorell, B., Westerhoff, H. V. & Charyulu, K. K. N. (1983) Metabolic control and compartmentation in single living cells. Cell Biochem. Funct. 1, 3–16.

  98. Kohen, E., Kohen, C., Morliere, P., Santus, R., Reyftmann, J. P., Dubertret, L., Hirschberg, J. G. & Coulomb, B. (1986) A microspectrofluorometric study of the effect of anthralin, an antipsoriatic drug, on cellular structures and metabolism. Cell Biochem. Funct. 4, 157–68.

  99. Kooij, A. (1994) A re-evaluation of the tissue distribution and physiology of xanthine oxidoreductase. Histochem. J. 26, 889–915.

  100. Krieger, K., Maly, I. P., Toranelli, M., Crotet, V. & Sasse, D. (1994) Ultrathin-layer microelectrophoretic determination of lactate dehydrogenase isoenzymes in corneal and conjunctival epithelium of the cow. Histochemistry 101, 271–5.

  101. Kugler, P. (1981) Kinetic and morphometric measurements of enzyme reactions in tissue sections with a new instrumental setup. Histochemistry 71, 433–49.

  102. Kugler, P. (1982a) Aminopeptidase A is angiotensinase A. I. Quantitative histochemical studies in the kidney glomerulus. Histochemistry 74, 229–45.

  103. Kugler, P. (1982b) Aminopeptidase A is angiotensinase A. II. Biochemical studies on aminopeptidase A and M in rat kidney homogenate. Histochemistry 74, 247–61.

  104. Laborde, K., Bussieres, L., DeSmet, A., Dechaux, M. & Sachs, C. (1990) Quantification of renal Na-K-ATPase activity by image analysing system. Cytometry 11, 859–68.

  105. Lamers, W. H., Hilberts, A., Furt, E., Smith, J., Jonges, G. N., VanNoorden, C. J. F., Gaasbeek Janzen, J. W., Charles, R. & Moorman, A. F. M. (1989) Hepatic enzymic zonation: a reevaluation of the concept of the liver acinus. Hepatology 10, 72–6.

  106. Larsson, L.-I. (1988) Immunocytochemistry. Theory and Practice. Boca Raton: CRC.

  107. Lawrence, G. M., Beesley, A. C. H., Mason, G. I., Thompson, M., Walker, D. G. & Matthews, J. B. (1989) A comparison of histochemically and biochemically determined kinetic parameters for brain hexokinase type I. Inst. Phys. Conf. Ser. 98, 667–70.

  108. Lee, J. C. & Lee, L. L. Y. (1979) Interaction of calf brain tubulin with poly(ethylene glycols). Biochemistry 18, 5518–26.

  109. Lee, J. C. & Lee, L. L. Y. (1981) Preferential solvent interactions between proteins and polyethylene glycols. J. Biol. Chem. 256, 625–31.

  110. Lei, K.-J., Shelly, L. L., Pan, C.-J., Sidbury, J. B. & Chou, J. Y. (1993) Mutations in the glucose-6-phosphatase gene that cause glycogen storage disease type 1a. Science 262, 580–3.

  111. Lemasters, J. J., Ji, S. & Thurman, R. G. (1986) New micromethods for studying sublobular structure and function in the isolated perfused rat liver. In Regulation of Hepatic Metabolism: Intra- and Intercellular Compartmentation (edited by Thurman, R. G., Kauffman, F. C. & Jungermann, K.), pp. 159–184. New York: Plenum.

  112. Leytus, S. P., Melhado, L. L. & Mangel, W. F. (1983a) Rhodamine-based compounds as fluorogenic substrates for serine proteinases. Biochem. J. 209, 299–307.

  113. Leytus, S. P., Patterson, W. L. & Mangel, W. F. (1983b) New class of sensitive and selective fluorogenic substrates for serine proteinases. Biochem. J. 215, 253–60.

  114. Liang, B. & Petty, H. R. (1992) Imaging neutrophil activation: analysis of the translocation and utilization of NAD(P)H-associated autofluorescence during antibody-dependent target oxidation. J. Cell Physiol. 152, 145–56.

  115. Ling, G. N., Walton, C. L. & Ochsenfeld, M. M. (1981) A unitary cause for the exclusion of Na+ and other solutes from living cells, suggested by effluxes of Na+, D-arabinose, and sucrose from normal, dying, and dead muscles. J. Cell Physiol. 106, 385–98.

  116. Liou, R.-S. & Anderson, S. (1980) Activation of rabbit muscle phosphofructokinase by F-actin and reconstituted thin filaments. Biochemistry 19, 2684–8.

  117. Loud, A. V. (1968) Quantitative stereological description of the ultrastructure of normal rat liver parenchymal cells. J. Cell Biol. 37, 27–46.

  118. Makino, N., Mochizuki, Y., Bannai, S. & Sugita, Y. (1994) Kinetic studies on the removal of extracellular hydrogen peroxide by cultured fibroblasts. J. Biol. Chem. 269, 1020–5.

  119. Maly, I. P. & Sasse, D. (1988) Nutritional and gonadal effects on the intra-acinar profiles of low-Km and high-Km aldehyde dehydrogenase activity in rat liver. Histochemistry 88, 387–93.

  120. Maly, I. P. & Sasse, D. (1991) Intraacinar profiles of alcohol dehydrogenase and aldehyde dehydrogenase activities in human liver. Gastroenterology 101, 1716–23.

  121. Maly, I. P. & Toranelli, M. (1993) Ultrathin-layer zone electrophoresis of lactate dehydrogenase isoenzymes in microdissected liver samples. Analyt. Biochem. 214, 379–88.

  122. Markovic, N., Markovic, O., Roberts, J. & Markovic, S. (1994) A new assay for intracellular measurement of inosine monophosphate dehydrogenase activity: a guide for better selection of patients for enzyme-targeted chemotherapy. J. Histochem. Cytochem. 42, 23–35.

  123. Masters, C. J. (1981) Interactions between soluble enzymes and subcellular structure. CRC Crit. Rev. Biochem. 11, 105–43.

  124. Matsumoto, T. & Schwartz, G. J. (1992) Novel method for performing carbonic anhydrase histochemistry and immunocytochemistry on cryosections. J. Histochem. Cytochem. 40, 1223–7.

  125. Matsumura, T. & Thurman, R. G. (1983) Measuring rates of O2 uptake in periportal and pericentral regions of liver lobule: stop-flow experiments with perfused liver. Am. J. Physiol. 244, G656–9.

  126. Matsumura, T., Kashiwagi, T., Meren, H. & Thurman, R. G. (1984) Gluconeogenesis predominates in periportal regions of the liver lobule. Eur. J. Biochem. 144, 409–15.

  127. Medina, R., Aragon, J. J. & Sols, A. (1985) Effect of polyethylene glycol on the kinetic behaviour of pyruvate kinase and other potentially regulatory liver enzymes. FEBS Lett. 180, 77–80.

  128. Meijer, A. J., Lamers, W. H. & Chamuleau, R. A. F. M. (1990) Nitrogen metabolism and ornithine cycle function. Physiol. Rev. 70, 701–48.

  129. Meijer, A. J., Baquet, A., Gustafson, L., VanWoerkom, G. M. & Hue, L. (1992) Mechanism of activation of liver glycogen synthase by swelling. J. Biol. Chem. 267, 5823–8.

  130. Meijer, A. J., Gustafson, L. A., Luiken, J. J. F. P., Blommaart, P. J. E., Caro, H. P., VanWoerkom, G. M., Sprink, C. & Boon, L. (1993) Cell swelling and the sensitivity of autophagic proteolysis to inhibition by amino acids in isolated rat hepatocytes. Eur. J. Biochem. 215, 449–54.

  131. Minaschek, G., Gröschel-Stewart, U., Blum, S. & Bereiter-Hahn, J. (1992) Microcompartmentation of glycolytic enzymes in cultured cells. Eur. J. Cell Biol. 58, 418–28.

  132. Minton, A. P. (1981) Excluded volume as a determinant of macromolecular structure and reactivity. Biochemistry 20, 2093–120.

  133. Minton, A. P. (1983) The effect of volume occupancy upon the thermodynamic activity of proteins: some biochemical consequences. Mol. Cell. Biochem. 55, 119–40.

  134. Minton, A. P. & Wilf, J. (1981) Effect of macromolecular crowding upon the structure and function of an enzyme: glyceraldehyde-3-phosphate dehydrogenase. Biochemistry 20, 4821–6.

  135. Moorman, A. F. M., DeBoer, P. A. J., Vermeulen, J. L. M. & Lamers, W. H. (1993) Practical aspects of radio-isotopic in situ hybridization on RNA. Histochem. J. 25, 251–66.

  136. Mueller-Klieser, W. & Walenta, S. (1993) Geographical mapping of metabolites in biological tissue with quantitative bioluminescence and single proton imaging. Histochem. J. 25, 407–20.

  137. Nakae, Y. & Shono, M. (1984) Kinetic behaviour of succinate dehydrogenase of three fibre types in skeletal muscle. I. Effects of temperature and a competitive inhibitor. Histochem. J. 16, 1207–17.

  138. Nakae, Y. & Stoward, P. J. (1992) Initial reaction kinetics of succinate dehydrogenase in mouse liver studied with a real-time image analyser system. Histochemistry 98, 7–12.

  139. Nakae, Y. & Stoward, P. J. (1993) Estimating the initial reaction velocity of a soluble dehydrogenase in situ. Histochem. J. 25, 199–205.

  140. Nakae, Y. & Stoward, P. J. (1994) The diverse Michaelis constants and maximum velocities of lactate dehydrogenase in situ in various types of cell. Histochem. J. 26, 292–7.

  141. Newsholme, E. A. & Start, C. (1976) Regulation in Metabolism. London: Wiley.

  142. Newsholme, E. A., Crabtree, B. & Zammit, V. A. (1980) Use of enzyme activities as indices of maximum rates of fuel utilization. In Trends in Enzyme Histochemistry and Cytochemistry (edited by Evered, D. & O'Connor, M.), pp. 245–58. Amsterdam: Excerpta Medica.

  143. Novikoff, A. B. (1959) Cell heterogeneity within the hepatic lobule of the rat (staining reactions). J. Histochem. Cytochem. 7, 240–4.

  144. Old, S. L. & Johnson, M. A. (1989) Methods of microphotometric assay of succinate dehydrogenase and cytochrome c oxidase activities for use on human skeletal muscle. Histochem. J. 21, 545–55.

  145. O'Reilly, G. & Clarke, F. (1993) Identification of an actin binding region in aldolase. FEBS Lett. 321, 69–72.

  146. Ornstein, L. (1952) The distributional error in microspectrophotometry. Lab. Invest. 1, 250–62.

  147. Ovadi, J. (1988) Old pathway - new concept: control of glycolysis by metabolite-modulated dynamic enzyme associations. Trends Biochem. Sci. 13, 486–90.

  148. Ovádi, J., Aragón, J. J. & Sols, A. (1986) Phosphofructokinase and fructosebiphosphatase from muscle can interact at physiological concentrations with mutual effects on their kinetic behavior. Biochem. Biophys. Res. Commun. 153, 852–6.

  149. Pagliaro, L. & Taylor, D. L. (1988) Aldolase exists in both the fluid and solid phases of cytoplasm. J. Cell Biol. 107, 981–91.

  150. Pagliaro, L. & Taylor, D. L. (1992) 2-Deoxyglucose and cytochalasin D modulate aldolase mobility in living 3T3 cells. J. Cell Biol. 118, 859–63.

  151. Pette, D. & Brandau, H. (1962) Intracellular localization of glycolytic enzymes in cross-striated muscles of Locusta migratoria. Biochem. Biophys. Res. Commun. 9, 367–70.

  152. Pette, D. & Hofer, H. W. (1980) The constant proportion enzyme group concept in the selection of reference enzymes in metabolism. In Trends in Enzyme Histochemistry and Cytochemistry (edited by Evered, D. & O'Connor, M.), pp. 231–44. Amsterdam: Excerpta Medica.

  153. Polak, J. M. & VanNoorden, S. (1986) Immunocytochemistry. Modern Methods and Applications. 2nd edn. Bristol: Wright.

  154. Powers-Lee, S. G., Mastico, R. A. & Bendayan, M. (1987) The interaction of rat liver carbamoyl phosphate synthetase and ornithine transcarbamoylase with inner mitochondrial membranes. J. Biol. Chem. 262, 15 683–8.

  155. Reeves, R. E. & Sols, A. (1973) Regulation of Escherichia coli phosphofructokinase in situ. Biochem. Biophys. Res. Commun. 50, 459–66.

  156. Reinhart, G. D. & Hartleip, S. B. (1987) Perturbation of the quaternary structure and allosteric behavior of rat liver phosphofructokinase by polyethylene glycol. Arch. Biochem. Biophys. 258, 65–76.

  157. Robertson, W. R., Frost, J., Høyer, P. E. & Weinkove, C. (1982) 20α-Hydroxysteroid dehydrogenase activity in the rat corpus luteum, a quantitative cytochemical study. J. Steroid Biochem. 17, 237–43.

  158. Roels, F. & Cornelis, A. (1989) Heterogeneity of catalase staining in human hepatocellular peroxisomes. J. Histochem. Cytochem. 37, 331–7.

  159. Rogalski, A. A., Steck, T. L. & Waseem, A. (1989) Association of glyceraldehyde-3-phosphate dehydrogenase with the plasma membrane of the intact human red blood cell. J. Biol. Chem. 264, 6438–46.

  160. Rothe, F., Wolf, G. & Schünzel, G. (1990) Immunohistochemical demonstration of glutamate dehydrogenase in the postnatally developing rat hippocampal formation and cerebellar cortex: comparison to activity staining. Neuroscience 39, 419–29.

  161. Rothe, G., Klingel, S., Assfalg-Machleidt, I., Machleidt, W., Zirkelbach, C., Banati, R. B., Mangel, W. F. & Valet, G. (1992) Flow cytometric analysis of protease activities in vital cells. Biol. Chem. H.-S. 373, 547–54.

  162. Rozhin, J., Gomez, A. P., Ziegler, G. H., Nelson, K. K., Chang, Y. S., Fong, D., Onoda, J. M., Honn, K. V. & Sloane, B. F. (1990) Cathepsin B to cysteine proteinase inhibitor balance in metastatic cell subpopulations isolated from murine tumors. Cancer Res. 50, 6278–84.

  163. Sasse, D. (1986) Liver structure and innervation. In Regulation of Hepatic Metabolism: Intra - and Intercellular Compartmentation (edited by Thurman, R. G., Kauffman, F. C. & Jungermann, K.), pp. 3–25. New York: Plenum Press.

  164. Sasse, D., Spornitz, U. M. & Maly, I. P. (1992) Liver architecture. Enzyme 46, 8–32.

  165. Schellens, J. P. M., Frederiks, W. M., VanNoorden, C. J. F., Vreeling-Sindelárová, H., Marx, F. & McMillan, P. J. (1992) The use of unfixed cryostat sections for electron microscopic study of D-amino acid oxidase activity in rat liver. J. Histochem. Cytochem. 40, 1975–9.

  166. Schwan, H. P. & Foster, K. R. (1977) Microwave dielectric properties of tissue. Some comments on the rotational mobility of tissue water. Biophys. J. 17, 193–7.

  167. Scott, J. E. (1974) The Feulgen reaction in polyvinyl alcohol or polyethylene glycol solution. ‘Fixation’ by excluded volume. J. Histochem. Cytochem. 22, 833–5.

  168. Sigel, P. & Pette, D. (1969) Intracellular localization of glycogenolytic and glycolytic enzymes in white and red rabbit skeletal muscle. J. Histochem. Cytochem. 17, 225–37.

  169. Singh, M. B. & Knox, R. B. (1984) Quantitative cytochemistry of β-galactosidase in normal and enzyme deficient (gal) pollen of Brassica campestris: application of the indigogenic method. Histochem. J. 16, 1273–96.

  170. Sinowatz, F., Scheubeck, M., Wrobel, K.-H. & Zwack, M. (1983) Histochemical localization and quantification of glucose-6-phosphate dehydrogenase in bovine Leydig cells. Histochem. J. 15, 831–44.

  171. Sloane, B. F., Rozhin, J., Moin, K., Zeigler, G., Fong, D. & Muschel, R. J. (1992) Cysteine endopeptidases and their inhibitors in malignant progression of rat embryo fibroblasts. Biol. Chem. H-S. 373, 589–94.

  172. Smith, R. E., Reynolds, C. J. & Elder, E. (1992) The evolution of proteinase substrates with special reference to dipeptidylpeptidase IV. Histochem. J. 24, 637–47.

  173. Sohar, I. & Katona, G. (1992) Regulation of proteinase activation in mammalian tissues. Biol. Chem. H-S. 373, 567–72.

  174. Srere, P. A. (1967) Enzyme concentrations in tissues. Science 158, 936–7.

  175. Srere, P. A. (1980) The infrastructure of the mitochondrial matrix. Trends Biochem. Sci. 5, 120–1.

  176. Srere, P. A. & Ovádi, J. (1990) Enzyme-enzyme interactions and their metabolic role. FEBS Lett. 268, 360–4.

  177. Srivastava, D. K. & Bernhard, S. A. (1984) Direct transfer of reduced nicotinamide adenine dinucleotide from glyceraldehyde-3-phosphate dehydrogenase to liver alcohol dehydrogenase. Biochemistry 23, 4538–45.

  178. Srivastava, D. K. & Bernhard, S. A. (1986) Metabolite transfer via enzyme—enzyme complexes. Science 234, 1081–6.

  179. Srivastava, D. K. & Bernhard, S. A. (1987) Biophysical chemistry of metabolic reaction sequences in concentrated enzyme solution and in the cell. Ann. Rev. Biophys. Chem. 16, 175–204.

  180. Srivastava, D. K., Bernhard, S. A., Langridge, R. & McClarin, J. A. (1985) Molecular basis for the transfer of nicotinamide adenine dinucleotide among dehydrogenases. Biochemistry 24, 629–35.

  181. Stanton, R. C., Seifter, J. L., Boxer, D. C., Zimmerman, E. & Cantley, L. C. (1991) Rapid release of bound glucose-6-phosphate dehydrogenase by growth factors. J. Biol. Chem. 266, 12 442–8.

  182. Stephan, P., Clarke, F. & Morton, D. (1986) The indirect binding of triose-phosphate isomerase to myofibrils to form a glycolytic enzyme mini-complex. Biochim. Biophys. Acta 873, 127–35.

  183. Stoward, P. J. & Pearse, A. G. E. (1991) Histochemistry. Theoretical and Applied, vol. 3, 4th edn. Edinburgh: Churchill Livingstone.

  184. Swezey, R. R. & Epel, D. (1986) Regulation of glucose-6-phosphate dehydrogenase activity in sea urchin eggs by reversible association with cell structural elements. J. Cell Biol. 103, 1509–15.

  185. Swezey, R. R. & Epel, D. (1988) Enzyme stimulation upon fertilization is revealed in electrically permeabilized sea urchin eggs. Proc. Natl Acad. Sci. USA 85, 812–6.

  186. Swezey, R. R. & Epel, D. (1992) The use of caged substrates to assess the activity of 6-phosphogluconate dehydrogenase in living sea urchin eggs. Exp. Cell Res. 201, 366–72.

  187. Thorell, B. (1981) Flow cytometric analysis of cellular endogenous fluorescence simultaneously with emission from exogenous fluorochromes, light scatter and absorption. Cytometry 2, 39–43.

  188. Thorell, B. (1983) Flow-cytometric monitoring of intracellular flavins simultaneously with NAD(P)H levels. Cytometry 4, 61–5.

  189. Tohyama, Y., Kameji, T. & Hayashi, S. (1991) Mechanisms of dramatic fluctuations of ornithine decarboxylase activity upon tonicity changes in primary cultured rat hepatocytes. Eur. J. Biochem. 202, 1327–31.

  190. Toth, A., Tischler, M. E., Pal, M., Koller, A. & Johnson, P. C. (1992) A multipurpose instrument for quantitative intravital microscopy. J. Appl. Physiol. 73, 296–306.

  191. Van DenMunckhof, R. J. M., Vreeling-Sindelárová, H., Schellens, J. P. M. & Frederiks, W. M. (1994) Localization of uric acid oxidase activity in core and matrix of peroxisomes as detected in unfixed cryostat sections of rat liver. J. Histochem. Cytochem. 42, 177–83.

  192. VanDuijn, P. (1976) Prospects of microscopical cytochemistry. Histochem. J. 8, 653–76.

  193. VanDuijn, P. (1991) Model systems. Principles and practice of the use of matrix-immobilized enzymes for the study of the fundamental aspects of cytochemical enzyme methods. In Histochemistry. Theoretical and Applied (edited by Stoward, P. J. & Pearse, A. G. E.), vol. 3, 4th edn., pp. 433–72. Edinburgh: Churchill Livingstone.

  194. VanNoorden, C. J. F. (1989) Principles of cytophotometry in enzyme histochemistry and validity of the reactions. Acta Histochem. (suppl.) 37, 21–35.

  195. VanNoorden, C. J. F. & Butcher, R. G. (1991) Quantitative enzyme histochemistry. In Histochemistry. Theoretical and Applied (edited by Stoward, P. J. & Pearse, A. G. E.), vol. 3, 4th edn., pp. 355–432. Edinburgh: Churchill Livingstone.

  196. VanNoorden, C. J. F. & Frederiks, W. M. (1992) Enzyme Histochemistry. A Laboratory Manual of Current Methods. Oxford: Oxford University Press.

  197. VanNoorden, C. J. F. & Jonges, G. N. (1992) Molar extinction coefficients of lead sulfide and polymerized diaminobenzidine as final reaction products of histochemical phosphatase reactions. Cytometry 13, 644–8.

  198. VanNoorden, C. J. F. & Vogels, I. M. C. (1989) Polyvinyl alcohol and other tissue protectants in enzyme histochemistry: a consumer's guide. Histochem. J. 21, 373–9.

  199. VanNoorden, C. J. F., Dolbaere, F. & Aten, J. (1989) Flow cytofluorometric analysis of enzyme reactions based on quenching of fluorescence by the final reaction product: detection of glucose-6-phosphate dehydrogenase deficiency in human erythrocytes. J. Histochem. Cytochem. 37, 1313–8.

  200. VanRaamsdonk, W., VanDen Bogert, C., Smit-Onel, M. J., Muijsers, A. O. & Diegenbach, P. C. (1994) Combined quantitative immuno- and enzyme cytochemistry of cytochrome c oxidase in sections of neural tissue and cultured cells. Acta Histochem. 96, 19–32.

  201. VanSteveninck, J., Paardekooper, M., Dubbelman, T. M. A. R. & Ben-Hur, E. (1991) Anomalous properties of water in macromolecular gels. Biochim. Biophys. Acta 1115, 96–100.

  202. Walsh, T. P., Clarke, F. M. & Masters, C. J. (1977) Modification of the kinetic parameters of aldolase on binding to the actin-containing filaments of skeletal muscle. Biochem. J. 165, 165–7.

  203. Watanabe, J., Asaka, Y., Amatsu, T. & Kanamura, S. (1992) A computer-assisted dual wavelength microphotometry system for the measurement of cytochrome P-450 content in sections. Acta Histochem. Cytochem. 25, 65–9.

  204. Wiame, J. M. (1971) The regulation of arginine metabolism in Saccharomyces cerevisiae: exclusion mechanisms. Curr. Top. Cell. Regul. 4, 1–38.

  205. Wiggins, P. M. (1982) A possible mechanism for the Ca-ATPase of sarcoplasmic reticulum. J. Theor. Biol. 99, 645–64.

  206. Willemsen, R., Van DerPloeg, A. T., Busch, H. F. M., Zondervan, P. E., VanNoorden, C. J. F. & Reuser, A. J. J. (1993) Synthesis and in situ localization of lysosomal α-glucosidase in muscle of an unusual variant of glycogen storage disease type II. Ultrastruct. Pathol. 17, 515–27.

  207. Wilson, J. E. (1978) Ambiquitous enzymes: variation in intra-cellular distribution as a regulatory mechanism. Trends Biochem. Sci. 3, 124–5.

  208. Yamamoto, T., Morikawi, Y., Takahashi, S., Hada, T., Suda, M., Imanishi, H., Agbedana, O. E., Nanahoshi, M. & Higashino, K. (1991) A xanthinuric family - the proposita having immunologically reactive xanthine oxidase but no xanthine oxidase activity. In Purine and Pyrimidine Metabolism in Man VII part A: Chemotherapy, ATP Depletion, and Gout (edited by Harkness, R. A., Elion, G. B. & Zöllner, N.), pp. 369–372. New York: Plenum Press.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Van Noorden, C.J.F., Jonges, G.N. Analysis of enzyme reactions in situ . Histochem J 27, 101–118 (1995). https://doi.org/10.1007/BF00243905

Download citation


  • Regulation Mechanism
  • Enzyme Reaction
  • Protein Molecule
  • Activity Modulation
  • Cellular Metabolism