Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Unification in Abelian semigroups

  • 41 Accesses

  • 30 Citations

Abstract

Unification in equational theories, i.e., solving of equations in varieties, is a basic operation in computational logic, in artificial intelligence (AI) and in many applications of computer science. In particular the unifiction of terms in the presence of an associative and commutative function, i.e., solving of equations in Abelian semigroups, turned out to be of practical relevance for term rewriting systems, automated theorem provers and many AI-programming languages. The observation that unification under associativity and commutativity reduces to the solution of certain linear diophantine equations is the basis for a complete and minimal unification algorithm. The set of most general unfiers is closely related to the notion of a basis for the linear solution space of these equations.

This result is extended to unification in free term algebras combined with Abelian semigroups.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Baader, F., ‘The Theory of Idempotent Semigroups is of Unification Type Zero’, Journal of Automated Reasoning, 2 (3), 283–286, (1986).

  2. 2.

    Büttner, W., ‘Unification in the Datastructure Multisets’, Journal of Automated Reasoning, 2 (1), 75–88, (1986).

  3. 3.

    Burris, S., and Sankappanavar, H. P., A Course in Universal Algebra, Springer-Verlag, (1981).

  4. 4.

    Clifford, A. H., and Preston, G. B., The Algebraic Theory of Semigroups, Volume 2, American Mathematical Society, (1967).

  5. 5.

    Dickson, L. E., ‘Finiteness of the Odd Perfect and Primitive Abundant Numbers with n Distinct Prime Factors’, Amer. J. Math. 34, 413–422, (1913).

  6. 6.

    Fages, F., ‘Formes canoniques dans les algèbres booléennes, et application à la démonstration automatique en logique de premier ordre’, Thèse de 3ème Cycle, Université Paris VI, (1983).

  7. 7.

    Fages, F., ‘Associative-Commutative Unification’, Proc. of 7th CADE (ed. Shostak, R. E.), Springer-Verlag, LNCS 170, 194–208, (1984).

  8. 8.

    Fages, F., ‘Associative-Commutative Unification’, Technical Report, INRIA, BP 105, 78153 le Chesnay, (1985).

  9. 9.

    Fages, F. and Huet, G., ‘Unification and Matching in Equational Theories’, Journal of Theoretical Computer Science 43, 189–200, (1986).

  10. 10.

    Fortenbacher, A., ‘Algebraische Unifikation’, Diplomarbeit, Universität Karlsruhe, (1983).

  11. 11.

    Fortenbacher, A., ‘An Algebraic Approach to Unification under Associativity and Commutativity’, Proc. of Rewriting Techniques and Applications (ed. Jouannaud, J.-P.), Springer-Verlag, LNCS 202, 381–397, (1985).

  12. 12.

    Gordan, P., ‘Uber die Auflösung linearer Gleichungen mit reellen Coefficienten’, Mathematische Annalen, 23–28, (1873).

  13. 13.

    Guckenbiehl, T., and Herold, A., ‘Solving Linear Diophantine Equations’, MEMO SEKI-III-KL, Universität Kaiserslautern, (1985).

  14. 14.

    Grätzer, G., Universal Algebra, Springer-Verlag, (1979).

  15. 15.

    Goguen, J. A., Thatcher, J.W. and Wagner, E. G., ‘An Initial Algebra Approach to the Specification, Correctness and Implementation of Abstract Data Types’, in Current Trends in Programming Methodology, Vol. 4, Data Structuring (ed. Yeh, R. T.), Prentice Hall, (1978).

  16. 16.

    Huet, G. and Oppen, D. C., ‘Equations and Rewrite Rules: A Survey, in Formal languages: Perspectives and Open Problems (ed. Book, R.), Academic Press, (1980).

  17. 17.

    Hullot, J. M., ‘Compilation de formes canoniques dans des théories équationelles’, Thèse de 3éme Cycle, Université de Paris-Sud, (1980).

  18. 18.

    Huet, G., ‘Réolution d'équations dans des langages d'ordre 1, 2, ..., ω’, Thèse de doctorat d'état, Université paris VIII, (1976).

  19. 19.

    Huet, G., ‘An Algorithm to Generate the Basis of Solutions to Homogeneous Linear Diophantine Equations’, Information Processing letters, 7 (3), 144–147, (1978).

  20. 20.

    Hewitt, C., ‘Description and Theoretical Analysis of PLANNER, a Language for proving Theorems and Manipulating Models in a Robot’, Ph. D. thesis, Dept. of Mathematics, MIT, (1972).

  21. 21.

    Kirchner, C., ‘Methodes et outils de conception systematique d'algorithmes d'unification dans les théories équationelles’, Thèse de doctorat d'état, Université de Nancy 1, (1985).

  22. 22.

    Knuth, D., and Bendix, P., ‘Simple Word Problems in Universal Algebras’, Proc. of Computational Problems in Abstract Algebra (ed leech, J.), Pergamon Press, 263–297, (1970).

  23. 23.

    D. Lankford, ‘A New Non-negative Integer Basis Algorithm for Linear Homogeneous Equations with Integer Coefficients’, unpublished, (1985).

  24. 24.

    Livesey, M. and Siekmann, J., ‘Unification of AC-Terms (bags) and ACI-Terms (sets)’, Internal Report, University of Essex (1975) and Technical Report 3-76, Universität Karlsruhe, (1976).

  25. 25.

    Livesey, M. and Siekmann, J., ‘Unification of Sets and Multisets’, SEKI-Technical Report, Universität karlsruhe, (1978).

  26. 26.

    Plotkin, G. D., ‘Building-in Equational Theories’, Machine Intelligence 7 (eds. Meltzer, B. and Michie, D.), 73–90, (1972).

  27. 27.

    Peterson, M. S., and Stickel, M. E., ‘Complete Sets of Reductions for Equational Theories with Complete Unification Algorithms’, JACM 28 (2), 322–264, (1984).

  28. 28.

    Rulifson, J. F., Derkson, J. A., and Waldinger, R. J., ‘QA4: A procedural Calculus for Intuitive Reasoning’, Tecn. Report, Stanford Research Institute, AI-Research Centre, TR-73, (1972).

  29. 29.

    Robinson, J. A., ‘A Machine-Oriented Logic Based on the Resolution Principle’, JACM 12 (1), 23–41. (1965).

  30. 30.

    Schmidt-Schauß, M., ‘Unification under Associativity and Idempotence is of Type Nullary’, Journal of Automated Reasoning 2 (3), 277–282, (1986).

  31. 31.

    Siekmann, J., ‘Universal Unification’, Proc. of 7th CADE (ed. Shostak, R. E.), Springer-Verlag, LNCS 170, 1–42, (1984).

  32. 32.

    Siekmann, J., ‘Unification Theory’, to appear in Journal of Symbolic Computation. (1987).

  33. 33.

    Stickel, M. E., ‘A Complete Unification Algorithm for Associative-Commutative Functions’, Proc. of 4th IJCAI, Tblisi, USSR, 71–82, (1975).

  34. 34.

    Stickel, M. E., ‘Unification Algorithms for Artificial Intelligence’, Ph. D. thesis, Carnegie-Mellon University, (1976).

  35. 35.

    Stickel, M. E., ‘A Unification Algorithm for Associative-Commutative Functions’, JACM 28 (3), 423–434, (1981).

  36. 36.

    Stickel, M. E., ‘A Case Study of Theorem Proving by the Knuth-Bendix Method Discovering that X 3=X Implies Ring Commutativity’, Proc. of 7th CADE (ed. Shostak, R. E.), Springer-Verlag, LNCS 170, 248–258, (1984).

  37. 37.

    Wos, L., Overbeek, R., Lusk, E., and Boyle, J., Automated Reasoning — Introduction and Applications, Prentice-Hall, (1984).

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Herold, A., Siekmann, J.H. Unification in Abelian semigroups. J Autom Reasoning 3, 247–283 (1987). https://doi.org/10.1007/BF00243791

Download citation

Key words

  • Unification
  • associativity
  • commutativity
  • Abelian monoids
  • Abelian semigroups
  • automated theorem proving