Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Application of metallic foams in an electrochemical pulsed flow reactor Part I: Mass transfer performance

Abstract

This paper describes mass transfer in a porous percolated pulsated electrochemical reactor (E3P reactor), fitted with nickel foam electrodes in an axial configuration. The work is aimed at optimization of the mass transfer conditions in electroorganic reactions such as the oxidative cleavage of diols or the conversion of DAS (diacetone-l-sorbose) into DAG (diacetone-2-keto-l-gulonic acid). The use of nickel foam as an electrode material is of interest for these electrocatalytic reactions due to its high specific surface area (4000 to 11000 m−1) and its high porosity (over 0.97). The electroreduction of ferricyanide has been chosen as a test reaction in order to correlate the mass transfer coefficient with the overall flow velocity and the amplitude and frequency of the electrolyte pulsation. Four foam grades have been tested.

This is a preview of subscription content, log in to check access.

Abbreviations

a :

pulsation amplitude (m)

A ve :

dynamic specific area of the foam: surface area per volume of material (m−1)

C :

ferricyanide concentration in the cell (mol m−3)

D :

diffusion coefficient of ferricyanide (m2 s−1

d m :

mean path of a particle in the threedimensional electrode (m)

d R :

diameter of the reactor column (m)

d p :

mean foam pore diameter of the foam (m)

e :

thickness of the electrode bed (m)

f :

pulsation frequency (Hz)

F :

Faraday number (C mol−1)

I :

limiting diffusion current (A)

k d :

mass transfer coefficient with pulsation (m s−1)

k o :

mass transfer coefficient without pulsation (m s−1)

n :

number of electrons in the electrochemical reaction

Q v :

volummetric flow rate through the reactor (m3 s−1)

Re :

Reynolds number Re = U o d R v −1

Re pore :

Reynolds number based on mean pore diameter d p, Re pore = ϱU 0τd pε−1µ−1

S :

active surface area of the electrode (m2)

Sc :

Schmidt number, Sc = vD −1

Sh :

Sherwood number, Sh = k d d R D −1

Sh pore :

Sherwood number based on mean pore diameter d p, Sh pore = k d d p D −1

Sr :

Strouhal number, Sr = aωU 0 −1

t r :

mean residence time (s)

U 0 :

permanent superficial velocity U 0 = Q v/(πd R 2/4) (ms−1)

ε:

porosity of the foam

µ:

dynamic viscosity (kg m−1 s−1)

ν:

kinematic viscosity (m2 s−1)

ϱ:

liquid density (kg m−3)

ω:

pulsation, ω = 2πf (rad s−1)

τ:

tortuosity of porous medium

References

  1. [1]

    A. Ratel, Thèse de Doctorat I.N.P.T., Toulouse (1987).

  2. [2]

    A. Ratel, P. Duverneuil and G. Lacoste, J. Appl. Electrochem. 18 (1988) 394.

  3. [3]

    A. Ratel and G. Lacoste, ibid. 12 (1982) 267.

  4. [4]

    C. Molina, Thèse de Doctorat I.N.P.T., Toulouse (1991).

  5. [5]

    J. Rodrigues de Souza, Thèse de Doctorat I.N.P.T., Toulouse (1993).

  6. [6]

    S. Pouzet, N. Le Bolay and A. Ricard, Synth. Met. 55–57 (1993) 1495.

  7. [7]

    Idem, N. Le Bolay and A. Ricard, Electrochim. Acta 38 (1993) 217.

  8. [8]

    N. Le Bolay, J. F. Guilland and A. Ricard, Chem. Eng. J. 53 (1993) 137.

  9. [9]

    N. Le Bolay, J. F. Guilland and A. Ricard, Can. J. Chem. Eng. 72 (1994) 153.

  10. [10]

    C. Belmant, Thèse de Doctorat I.N.P.T., Toulouse (1993).

  11. [11]

    H. J. Schäfer, Top. Curr. Chem. 142 (1987) 101.

  12. [12]

    H. Rüholl and H. J. Schäfer, Synthesis (1988) 54.

  13. [13]

    H. J. Schafer and R. Schneider, Tetrahedron 47 (1991) 715.

  14. [14]

    P. M. Robertson, P. Berg, H. Reimann, K. Scleich and P. Seiler, J. Electrochem. Soc. 130 (1983) 591.

  15. [15]

    S. Langlois and F. Coeuret, J. Appl. Electrochem. 19 (1989) 43.

  16. [16]

    L. E. A. Berlouis and G. J. Hills, J. Electroanal. Chem. 180 (1984) 401.

  17. [17]

    A. Montillet, J. Comiti and J. Legrand, J. Mater. Sci. 27 (1992) 4460.

  18. [18]

    S. Langlois, J. O. Nanzer and F. Coeuret, J. Appl. Electrochem. 19 (1989) 736.

  19. [19]

    A. Montillet, J. Comiti and J. Legrand, ibid. 23 (1993) 1045.

  20. [20]

    S. Langlois and F. Coeuret, ibid. 20 (1990) 740.

  21. [21]

    Idem and F. Coeuret, ibid. 20 (1990) 749.

  22. [22]

    A. Montillet, J. Comiti and J. Legrand, Chem. Eng. J. 52 (1993) 63.

  23. [23]

    S. Langlois and F. Coeuret, J. Appl. Electrochem. 19 (1989) 51.

  24. [24]

    A. Montillet, J. Comiti and J. Legrand, ibid. 24 (1994) 384.

  25. [25]

    P. Cognet, J. Berlan, G. Lacoste and J. M. Jud, Collection ‘Récents progrès en génie des procédés’ 27 (1993) 99.

  26. [26]

    SORAPEC, 192 rue Carnot, 94129 Fontenay sous Bois, France.

  27. [27]

    P. Cognet, Thèse de Doctoral I.N.P.T., Toulouse (1994).

  28. [28]

    C. J. Brown, D. Pletcher, F. C. Walsh, J. K. Hammond and D. Robinson, J. Appl. Electrochem. 23 (1993) 82.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Cognet, P., Berlan, J., Lacoste, G. et al. Application of metallic foams in an electrochemical pulsed flow reactor Part I: Mass transfer performance. J Appl Electrochem 25, 1105–1112 (1995). https://doi.org/10.1007/BF00242537

Download citation

Keywords

  • Foam
  • Mass Transfer Coefficient
  • Ferricyanide
  • High Specific Surface Area
  • Pulse Flow