Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes

  • 630 Accesses

  • 111 Citations

Abstract

A process for the capacitive deionization of water with a stack of carbon aerogel electrodes has been developed by Lawrence Livermore National Laboratory (LLNL). Unlike ion exchange, one of the more conventional deionization processes, no chemicals are required for regeneration of the system. Electricity is used instead. An aqueous solution of NH4ClO4 is pumped through the electrochemical cell. After polarization, NH in4 su+ and ClO in4 su− ions are removed from the water by the imposed electric field and trapped in the extensive cathodic and anodic double layers. This process produces one stream of purified water and a second stream of concentrate. The effects of cell voltage, salt concentration, and cycling on electrosorption capacity have been studied in detail.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    J. A. Trainham and J. Newman, J. Electrochem. Soc. 124 (1977) 1528–40.

  2. [2]

    J. Van Zee and J. Newman, ibid. 124 (1977) 706–8.

  3. [3]

    K. Moeglich, US Patent 4072 596, 7 Feb. (1978).

  4. [4]

    W. J. Blaedel and J. C. Wang, Anal. Chem. 51 (1979) 799–802.

  5. [5]

    T. Risch and J. Newman, J. Electrochem. Soc. 131 (1984) 2551–6.

  6. [6]

    P. Lessner and J. Newman, ibid. 131 (1984) 1828–31.

  7. [7]

    G. F. Platek, US Patent 4515 672, 7 May (1985).

  8. [8]

    M. Matlosz and J. Newman, J. Electrochem. Soc. 133 (1986) 1850–9.

  9. [9]

    B. B. Arnold and G. W. Murphy, J. Phys. Chem. 65 (1961) 135–8.

  10. [10]

    D. D. Caudle, J. H. Tucker, J. L. Cooper, B. B. Arnold and A. Papastamataki, ‘Electrochemical Demineralization of Water with Carbon Electrodes’, Research and Development Progress Report 188, US Department of the Interior, May (1966).

  11. [11]

    A. M. Johnson, A. W. Venolia, J. Newman, R. G. Wilbourne, C. M. Wong, , W. S. Gillam, S. Johnson and R. H. Horowitz, ‘Electrosorb Process for Desalting Water’, Office of Saline Water Research and Development Progress Report 516, US Department of the Interior, Publication 200 056, March (1970).

  12. [12]

    A. M. Johnson, A. W. Venolia, R. G. Wilbourne and J. Newman, ‘The Electrosorb Process for Desalting Water’, Marquardt Co., Van Nuys, CA, March (1970).

  13. [13]

    A. M. Johnson, US Patent 3515 664, 2 June (1970).

  14. [14]

    A. M. Johnson and J. Newman, J. Electrochem. Soc. 118 (1971) 510–7.

  15. [15]

    Y. Oren and A. Soffer, ibid. 125 (1978) 869–75.

  16. [16]

    Idem, J. Appl. Electrochem. 13 (1983) 473–87.

  17. [17]

    Idem, ibid. 13 (1983) 489–505.

  18. [18]

    M. D. Andelman, US Patent 5 415 768, 768,16 May (1995).

  19. [19]

    Idem, US Patent 5360 540, 1 Nov. (1994).

  20. [20]

    T. Otowa, International Patent Appl. PCT/US94/05364, 24 Nov. (1994).

  21. [21]

    J. C. Farmer, US Patent 5425 858, 20 June (1995).

  22. [22]

    J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala and J. F. Poco, Proceedings of the 5th International Conference on Radiation Waste Management Environment Remediation, Berlin, Germany, 3–9 September (1995), American Society of Mechanical Engineers (ASME), New York, vol. 2, (1995) pp. 1215–20.

  23. [23]

    J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala and J. F. Poco, Proceedings of the 1995 International SAMPE Technical Conference, Albuquerque, NM, 9 12 October (1995), Society for the Advancement of Material and Process Engineering (SAMPE), Covina, CA, vol. 27 (1995) pp. 294–304.

  24. [24]

    J. C. Farmer, D. V. Fix, G. V. Mack, R. W. Pekala and J. F. Poco, J. Electrochem. Soc. 143 (1996) 159–69.

  25. [25]

    Keitaro Katsu, Nippon Electric Co., Japan Patent Appl. 91-303 689 (1991).

  26. [26]

    Matsushita Electric Industrial Co., Ltd., Japan Patent Appl. 83-89451 (1983).

  27. [27]

    J. Tabuchi, Y. Kibi, T. Saito and A. Ochi, ‘Electrochemical Properties of Activated Carbon/Carbon Composites for Electric Double-layer Capacitor in New Sealed Rechargeable Batteries and Supercapacitors’, presented at the 183rd Electrochemical Society Meeting, Honolulu, HI, 16–21 May (1993).

  28. [28]

    Mitsui Petrochem Ind., Japan Patent Appl. 89-210 642 (1989).

  29. [29]

    S. T. Mayer, R. W. Pekala and J. L. Kaschmitter, J. Electrochem. Soc. 140 (1993) 446–51.

  30. [30]

    F. M. Delnick, D. Ingersoll and D. Firsich, ‘Double-layer Capacitance of Carbon Foam Electrodes’, SAND-93–2681, Sandia National Laboratory, Albuquerque, NM (1993).

  31. [31]

    R. W. Pekala, S. T. Mayer, J. F. Poco and J. L. Kaschmitter, ‘Novel forms of carbon II’, (edited by C. L. Renschler, D. M. Cox, J. J. Pouch and Y. Achiba), MRS Symp. Proc. 349 (1994) 79.

  32. [32]

    J. Wang, L. Angnes, H. Tobias, R. A. Roesner, K. C. Hong, R. S. Glass, F. M. Kong and R. W. Pekala, Anal. Chem. 65 (1993) 2300–3.

  33. [33]

    J. L. Kaschmitter, S. T. Mayer and R. W. Pekala, US Patent 5 260 855.

  34. [34]

    R. W. Pekala, C. T. Alviso, ‘Novel forms of carbon’, (edited by C. L. Renschler, J. J. Pouch and D. M. Cox), MRS Symp. Proc. 270 (1992) 3.

  35. [35]

    R. W. Pekala, ‘Ultrastructure processing of advanced materials’, (edited by D. R. Uhlmanjn and D. R. Ulrich), John Wiley & Sons, New York (1992) pp. 711–17.

  36. [36]

    A. J. Bard and L. R. Faulkner, ‘Electrochemical methods, fundamentals and applications’, John Wiley & Sons, New York (1980) pp. 500–15.

  37. [37]

    W. J. Dixon and F. J. Massey, Jr., ‘Introduction to statistical analysis’, 3rd edn., McGraw-Hill, San Francisco, CA (1969), chapter 11, pp. 193–6.

  38. [38]

    C. J. King, ‘Separation processes’, 2nd edn., McGraw-Hill, San Francisco, CA (1980) pp. 661–4.

  39. [39]

    J. S. Newman, ‘Electrochemical systems’, 2nd edn., Prentice Hall, Englewood Cliffs, NJ (1991) pp. 89–94.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Farmer, J.C., Fix, D.V., Mack, G.V. et al. Capacitive deionization of NH4ClO4 solutions with carbon aerogel electrodes. J Appl Electrochem 26, 1007–1018 (1996). https://doi.org/10.1007/BF00242195

Download citation

Keywords

  • Physical Chemistry
  • Aqueous Solution
  • Salt Concentration
  • Double Layer
  • National Laboratory