Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Methanol permeability in perfluorosulfonate proton exchange membranes at elevated temperatures


A simple electrochemical method for the measurement of the permeability of methanol in proton exchange membranes equilibrated with a supporting liquid electrolyte at elevated temperatures is proposed. Carbon supported platinum working electrodes are placed to both sides of the membrane sample and serve as concentration sensors. Methanol is added to one or both sides of the membrane and the permeability is calculated from the time responses of anodic peak currents on the two working electrodes. Experimental results are given for Nafion® 117 perfluorosulfonate membrane in 2.Om H2SO4 at 60 and 70°C.

This is a preview of subscription content, log in to check access.


A :

geometric area (cm2)

c :

concentration (mol cm−3)

D :

diffusivity (cm2 s−1)

E :

potential vs RHE (V)

ΔE :

activation energy (kJ mol−1)

H :

Henry law constant (atm mol−1 cm3)

j :

current (mA)

K :

rate constant (cm3 s−1)

K * :

partition coefficient

l :

thickness (cm)

N :

molecular flux (mol cm−2 s−1)

p :

pressure (atm)

t :

time, (s)

T :

temperature (°C)

V :

volume (cm3)


volume fraction


time constant (s)






index, 1: glass cell; 2: sample holder












initial double layer charging


anodic peak


  1. [1]

    R. Parsons and T. VanderNoot, J. Electroanal. Chem. 257 (1988) 9.

  2. [2]

    J. Munk, P. A. Christensen, A. Hamnett and E. Skou, J. Electroanal. Chem. (1994), in press.

  3. [3]

    P. S. Kauranen, E. Skou and J. Munk, J. Electroanal. Chem. (1995), in press.

  4. [4]

    S. Surampudi, S. R. Narayanan, E. Vamos, H. Frank and G. Halpert, J. Power Sources 47 (1994) 377.

  5. [5]

    A K.Shukla, P. A. Christensen, A. Hamnett and M. P. Hogard, ibid. 55 (1995) 87.

  6. [6]

    B. D. McNicol, J. Electroanal. Chem. 118 (1981) 71.

  7. [7]

    M. W. Verbrugge, J. Electrochem. Soc. 136 (1989) 417.

  8. [8]

    R. Savinell, E. Yeager, D. Tryk, U. Landau, J. Wainright, D. Weng, K. Lux, M. Litt and C. Rogers, J. Electrochem. Soc. 141 (1994) L46.

  9. [9]

    P. S. Kauranen and E. Skou, in Proceedings of the 2nd Nordic Symposium on ‘Hydrogen and Fuel Cells for Energy Storage’ (edited by P. D. Lund), Helsinki, Finland, 19–20 Jan. (1995).

  10. [10]

    B. Bittins-Cattaneo, S. Wasmus, B. Lopez-Mishima and W. Vielstich, J. Appl. Electrochem. 23 (1993) 625.

  11. [11]

    D. Chu and S. Gilman, J. Electrochem. Soc. 141 (1994) 1770.

  12. [12]

    A. S. Arico, V. Antonucci, V. Alderucci, E. Modica and N. Giordano, J. Appl. Electrochem. 23 (1993) 1107.

  13. [13]

    S. Kato, K. Nagahama, H. Noritomi and H. Asai, J. Membrane Sci. 72 (1992) 31.

  14. [14]

    J. Kjær, S. Yde-Andersen, N. A. Knudsen and E. Skou, Solid State Ionics 49 (1991) 169.

  15. [15]

    H. Angerstein-Kozlowska, B. E. Conway and W. B. A. Sharp, J. Electroanal. Chem. 48 (1973) 1.

  16. [16]

    M. W. Verbrugge and R. F. Hill, J. Phys. Chem. 92 (1988) 6778.

  17. [17]

    M. W. Verbrugge and R. F. Hill, J. Electrochem. Soc. 139 (1992) 3421.

  18. [18]

    M. P. Hogart, J. Munk, A. K. Shukla and A. Hamnett, J. Appl. Electrochem. 24 (1994) 85.

  19. [19]

    E. A. Ticianelli, C. R. Derouin, A. Redondo and S. Srinivasan, J. Electrochem. Soc. 135 (1988) 2209.

  20. [20]

    J. S. Newman, ‘Electrochemical Systems,’' 2nd edn, Prentice-Hall, Englewood Cliffs, NJ (1991).

  21. [21]

    A. Parthasarathy, S. Srinivasan and A. J. Appleby, J. Electrochem. Soc. 139 (1992) 2530.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kauranen, P.S., Skou, E. Methanol permeability in perfluorosulfonate proton exchange membranes at elevated temperatures. J Appl Electrochem 26, 909–917 (1996).

Download citation


  • Methanol
  • Permeability
  • Physical Chemistry
  • Platinum
  • Time Response