Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Kinetics and mechanism of the magnesium electrode reaction in molten magnesium chloride


Using electrochemical impedance spectroscopy (EIS) and relaxation method with galvanostatic perturbation (RM) the kinetics and mechanism of the magnesium electrode reaction in pure molten M9Cl2 have been determined at several temperatures. A three-step electrode process has been found, the high frequency process being pure charge transfer with the low frequency process showing mixed charge transfer-diffusion character. The low frequency step has also been treated as a preceding chemical reaction followed by charge transfer. On the basis of the corresponding exchange current densities and Warburg diffusion impedance, a mechanism of the overall electrode reaction in this melt is proposed.

This is a preview of subscription content, log in to check access.


  1. [1]

    G. M. Rao, J. Electroanal. Chem. Interfacial Electroch. 249 (1988) 191.

  2. [2]

    R. Tunold, ‘Light Metals’, Trans. Metall. Soc., AIME, (1980) p. 949.

  3. [3]

    B. Børresen, G. Haarberg, R. Tunold and O. Wallevik. Proceedings of the international symposium on molten salt chemistry and technology, Honolulu, HI, The Electrochemical Society, NY, USA 93–9 (1993) p. 193.

  4. [4]

    J. Wypartowicz, T. Ostvold and H. A. Øye, Electrochim. Acta 25 (1980) 151.

  5. [5]

    J. D. van Norman and J. J. Egan, J. Phys. Chem. 67 (1963) 2460.

  6. [6]

    M. H. Brooker and C. H. Huang, Can. J. Chem. 58 (1980) 168.

  7. [7]

    V. A. Maroni, E. J. Hathaway and E. J. Cairns, J. Phys. Chem. 75 (1971) 155.

  8. [8]

    R. J. Capwell, Chem. Phys. Lett. 12 (1972) 443.

  9. [9]

    C. H. Huang and M. H. Brooker, 43 (1976) 180.

  10. [10]

    A. Kisza, Polish J. Chem. 67 (1993) 885.

  11. [11]

    , 68 (1994) 613.

  12. [12]

    A. Kisza and J. Kazmierczak, 68 (1994) 329.

  13. [13]

    J. Thonstad and A. Kisza, ‘Molten salt forum’ Vols. 1–2, Trans. Tech. Publications, Aldermannsdorf, Switzerland (1993–94) p. 195.

  14. [14]

    J. Thonstad, A. Kisza and J. Kazmierczak, J. Appl. Electrochem, in press.

  15. [15]

    A. Kisza, J. Kazmierczak, B. Børresen, G. M. Haarberg and R. Tunold, J. Electrochem. Soc., 142 (1995) 1035.

  16. [16]

    A. J. Bard, R. L. Faulkner, ‘Electrochemical methods, fundamentals and applications’, John Wiley, New York (1980).

  17. [17]

    J. Ross Macdonald, ‘Impedance spectroscopy’, John Wiley, New York (1987).

  18. [18]

    B. Boucamp, ‘Equivalent circuit’, University of Twente, Holland (1988–89).

  19. [19]

    J. Ross Macdonald, Complex nonlinear least squares immittance fitting program', Department of Physics and Astronomy, University of North Carolina, Chapel Hill, NC.

  20. [20]

    D. E. Smith, ‘Electroanalytical chemistry’, vol. 1, (edited by A. J. Bard), Dekker, New York (1966) p. 1.

  21. [21]

    M. Sluyters-Rehbach and J. H. Sluyters, ‘Electroanalytical chemistry’, vol. 4, (edited by A. J. Bard), Dekker, New York (1970) p. 1.

  22. [22]

    H. Matsuda, P. Delahay and M. Kleinermann, J. Am. Chem. Soc. 81 (1979) 6379.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kisza, A., Kaźmierczak, J., Børresen, B. et al. Kinetics and mechanism of the magnesium electrode reaction in molten magnesium chloride. J Appl Electrochem 25, 940–946 (1995). https://doi.org/10.1007/BF00241588

Download citation


  • Charge Transfer
  • Electrochemical Impedance Spectroscopy
  • Electrochemical Impedance Spectroscopy
  • Electrode Reaction
  • Relaxation Method