Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Electrochromic characteristics of a complementary tungsten trioxide/Prussian blue cell

  • 89 Accesses

  • 27 Citations

Abstract

Optically switchable electrochromic materials are of importance in the automobile industry for the control of solar heat load, glare reduction, and privacy applications. A complementary electrochromic cell consisting of a cathodically colouring tungsten trioxide (WO3) film, an anodically colouring Prussian blue (PB) film, and a Li+ conducting polymer electrolyte was made. Cycling characteristics and colouration efficiency of the cell at various stages of cycling were evaluated. It was shown that the complementary cell requires less energy for operation compared to cells with a single film. The WO3/PB was cycled up to 1300 times. A gradual decrease in the contrast between the coloured and the bleached states upon cycling was observed during the first 400 cycles. The colouration efficiency of 102 cm2C−1 at the first cycle decreased to 67 cm2C−1 after 387 cycles. The cause of degradation is attributed to the lack of K+ ions available to PB film.

This is a preview of subscription content, log in to check access.

References

  1. [1]

    M. A. Habib, ‘Electrochromism’, Research Report, GMR 7068, General Motors Research Laboratories, Warren, MI, 19 June (1990).

  2. [2]

    ‘Large Area Chromagenics: Materials and Devices for Transmittance Control’, (edited by Carl Lampert and Claes G. Granqvist), SPIE Optical Engineering Press (1990).

  3. [3]

    M. A. Habib and D. Glueck, Solar Energy Materials 18 (1989) 127.

  4. [4]

    K. Itaya, I. Uchida and V. D. Neff, Acc. Chem. Res. 19 (1986) 162.

  5. [5]

    T. Kase, M. Kawai and M. Ura, Society of Automotive Engineers Passenger Car Meeting and Exposition. SAE Technical Paper Series, Paper 861362, 22–25 Sept. (1986).

  6. [6]

    M. Kawai, H. Miyagi and M. Ura, EP Application 85116655.3, Publication 189601, 6 Aug. (1986).

  7. [7]

    H. Tachikawa, in: ‘Standard Potentials in Aqueous Solutions’, (edited by A. J. Bard and J. Jordan), Marcel Dekker, New York (1985), pp. 727.

  8. [8]

    H. Tada, Y. Bito, K. Fujino and H. Kawahara, Solar Energy Materials 16 (1987) 509.

  9. [9]

    K. Honda, M. Fujita, H. Ishida, R. Yamamoto and K. Ohgaki, J. Electrochem. Soc. 135, 3151 (1988).

  10. [10]

    J. McHardy and J. O'M. Bockris, J. Electrochem. Soc. 120 (1973) 53.

  11. [11]

    R. S. Crandall, P. J. Wojtowicz and B. W. Faughnan, Solid State Ionics 18 (1976) 1409.

  12. [12]

    M. Green and K. Kang, Displays 9 (1988) 166.

  13. [13]

    S. K. Deb and J. A. Choporian, J. Appl. Phys. 37 (1988) 4818.

  14. [14]

    S. K. Deb, Appl. Optics, Suppl. 3, (1969); Proc. Roy. Soc. 304A (1968) 211.

  15. [15]

    B. W. Faughnan, R. S. Crandall and P. M. Heyman, RCA Rev. 36 (1975) 177.

  16. [16]

    M. A. Habib and S. P. Maheswari, Research Report GMR-7049, General Motors Research Laboratories, Warren, MI, 30 April (1990) J. Electrochem. Soc. 138 (1991) 2029.

  17. [17]

    G. Ho, I. D. Raistrick and R. A. Huggins, J. Electrochem. Soc. 127 (1980) 343.

  18. [18]

    M. Green, Thin Solid Films 50 (1978) 145.

  19. [19]

    S. K. Mahapatra, J. Electrochem. Soc. 125 (1978) 284.

  20. [20]

    K. Itaya, T. Ataka and S. Toshima, J. Amer. Chem. Soc. 104 (1982) 4767.

  21. [21]

    A. L. Crumbliss, P. S. Lugg and N. Morosoff, Inorg. Chem. 23 (1984) 4701.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Habib, M.A., Maheswari, S.P. Electrochromic characteristics of a complementary tungsten trioxide/Prussian blue cell. J Appl Electrochem 23, 44–50 (1993). https://doi.org/10.1007/BF00241574

Download citation

Keywords

  • Tungsten
  • Polymer Electrolyte
  • Heat Load
  • Prussian Blue
  • Blue Cell