Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Interocular transfer of the motion after-effect in normal and stereoblind observers

  • 186 Accesses

  • 56 Citations

Summary

The extent of interocular transfer of the motion after-effect was measured in 4 stereoblind subjects and in 19 subjects having varying degrees of stereopsis. Stereoblind individuals failed completely to show any interocular transfer of this after-effect, while subjects with good stereopsis exhibited between 55 and 82% transfer (mean 73%). Furthermore, normal subjects who manifested a clear eye dominance tended to show greater transfer from the dominant to the nondominant eye than vice versa. Individuals who either had a history of a strabismus or possessed some other early impediment to clear binocular vision tended to show less transfer. Overall there was a significant positive correlation of 0.75 between the extent of interocular transfer and the subject's stereoacuity.

It is argued that the extent of interocular transfer of this after-effect provides a measure of the proportion of the total number of visual cortical neurons that are binocular. Thus stereoblind humans, who show no transfer whatsoever may, like cats and monkeys deprived of concordant binocular visual input early in life, suffer from a lack of binocular neurons.

This is a preview of subscription content, log in to check access.

References

  1. Adams, R.: An account of a peculiar optical phenomenon seen after having looked at a moving body. Phil. Mag. 5, 373–374 (1834)

  2. Anstis, S.M., Moulden, B.P.: After-effect of seen movement: evidence for peripheral and central components. Quart. J. exp. Psychol. 22, 222–229 (1970)

  3. Baker, F.H., Grigg, P., Von Noorden, G.K.: Effects of visual deprivation and strabismus on the response of neurons in the visual cortex of the monkey, including studies on the striate and prestriate cortex in the normal animal. Brain Res. 66, 185–208 (1974)

  4. Barlow, H.B., Brindley, G.S.: Interocular transfer of movement after-effects during pressure blinding of the stimulated eye. Nature (Lond.) 200, 1374 (1963)

  5. Barlow, H.B., Blakemore, C., Pettigrew, J.D.: The neural mechanism of binocular depth discrimination. J. Physiol. (Lond.) 193, 327–342 (1967)

  6. Beverley, K.I., Regan, D.: Selective adaptation in stereoscopic depth perception. J. Physiol. (Lond.) 232, 40–41P (1973a)

  7. Beverley, K.I., Regan, D.: Evidence for the existence of neural mechanisms selectively sensitive to the direction of movement in space. J. Physiol. (Lond.) 235, 17–29 (1973b)

  8. Blakemore, C.: Developmental factors in the formation of feature extracting neurons. In: The Neurosciences, Third Study Program. Ed. by Woorden, F.G. and Schmitt, F.O. Cambridge, Mass.: M.I.T. Press 1974

  9. Blakemore, C., Campbell, F.W.: On the existence of neurons in the human visual system selectively sensitive to the orientation and size of retinal images. J. Physiol. (Lond.) 203, 237–260 (1969)

  10. Blakemore, C., Hague, B.: Evidence for disparity detecting neurons in the human visual system. J. Physiol. (Lond.) 225, 437–455 (1972)

  11. Blakemore, C., Nachmias, J., Sutton, P.: The perceived spatial frequency shift: evidence for frequency — selective neurons in the human brain. J. Physiol. (Lond.) 210, 727–750 (1970)

  12. Day, R.H.: On interocular transfer and the central origin of visual after-effects. Amer. J. Psychol. 71, 784–789 (1958)

  13. Day, R.H., Strelow, E.: Reduction or disappearance of visual after-effect of movement in the absence of patterned surround. Nature (Lond.) 230, 55–56 (1971)

  14. Dennis, W., Readings in the History of Psychology, p. 12. New York: Appleton-Century-Crofts 1948

  15. Durup, G.: Le problème des impressions de mouvement consécutives d'ordre visual. Ann. psychol. 29, 1–56 (1928)

  16. Dvořàk, V.: Versuche über die Nachbilder von Reizveränderungen. Sitzungsber., Wien. Akad. Wiss. 61, 257–262 (1870)

  17. Exner, S.: Einige Beobachtungen über Bewegungsnachbilder. Cent. Physiol. 1, 135–140 (1888)

  18. Felton, T.B., Richards, W., Smith, R.A.: Disparity processing of spatial frequencies in man. J. Physiol. (Lond.) 225, 349–362 (1972)

  19. Gibson, J.J.: Adaptation, after-effect and contrast in the perception of tilted lines. II. Areal restriction of the after-effect. J. exp. Psychol. (Lond.) 20, 553–569 (1937)

  20. Gilinsky, A.S., Doherty, R.S.: Interocular transfer of orientational effects. Science (N.Y.) 164, 454–455 (1969)

  21. Hirsch, H.V.B., Spinelli, D.M.: Visual experience modifies distribution of horizontally and vertically oriented receptive fields in cats. Science (N.Y.) 168, 869–871 (1970)

  22. Holland, H.C.: The Archimedes spiral. Nature (Lond.) 179, 432–433 (1957)

  23. Honig, W.K.: Studies of the “storage” of the after-effect of seen movement. Paper presented at the Psychonomic Society Meeting, Chicago 1967

  24. Hubel, D.H., Wiesel, T.N.: Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962)

  25. Hubel, D.H., Wiesel, T.N.: Binocular interaction in striate cortex of kittens reared with artificial squint. J. Neurophysiol. 28, 1041–1059 (1965)

  26. Hubel, D.H., Wiesel, T.N.: Cells sensitive to binocular depth in area 18 of the macaque monkey cortex. Nature (Lond.) 225, 41–42 (1970)

  27. Julesz, B.: Foundations of Cyclopean Perception. University of Chicago Press, Chicago 1971

  28. Mitchell, D.E., O'Hagan, S.: Accuracy of stereoscopic localization of small line segments that differ in size or orientation for the two eyes. Vision Res. 12, 437–454 (1972)

  29. Mitchell, D.E., Baker, A.G.: Stereoscopic after-effects: evidence for disparity-specific neurones in the human visual system. Vision Res. 13, 2273–2288 (1973)

  30. Mitchell, D.E., Ware, C.: Interocular transfer of a visual after-effect in normal and stereoblind humans. J. Physiol. (Lond.) 236, 707–721 (1974)

  31. Movshon, J.A., Chambers, B.E.I., Blakemore, C.: Interocular transfer in normal humans and those who lack stereopsis. Perception 1, 483–490 (1972)

  32. Nikara, T., Bishop, P.O., Pettigrew, J.D.: Analysis of retinal correspondence by studying receptive fields of binocular single units in cat striate cortex. Exp. Brian Res. 6, 353–372 (1968)

  33. Oppel, J.J.: Neue Beobachtungen und Versuche über eine eigentümliche noch wenig bekannte reaktionstätigkeit des menschlichen Auges. Pogg. Ann. Phys. u. Chem. 99, 540–561 (1856)

  34. Pettigrew, J.D.: The importance of early visual experience for neurons of the developing geniculo-striate system. Invest. Ophthal. 11, 386–394 (1972)

  35. Plateau, J.: Vierte Notiz über eine neue sonderbare Anwendung des Verweilens der Eindrücke auf der Netzhaut. Pogg. Ann. Phys. u. Chem. 80, 287–292 (1850)

  36. Purkinje, J.: Beobachtungen und Versuche zur Physiologie der Sinne. Bd. II. Berlin: G. Reimer 1825

  37. Regan, D., Beverley, K.I.: Disparity detectors in human depth perception: Evidence for directional selectivity. Science (N.Y.) 181, 877–879 (1973)

  38. Scott, T.R., Wood, D.Z.: Retinal anoxia and the locus of the after effect of motion. Amer. J. Psychol. 79, 435–442 (1966)

  39. Taylor, M.M.: Tracking the decay of the after-effect of seen rotary movement. Percept. Motor skills 16, 119–129 (1963)

  40. Walls, G.L.: Interocular transfer of afterimages? Amer. J. Optom. 30, 57–64 (1953)

  41. Ware, D., Mitchell, D.E.: On interocular transfer of various visual after-effects in normal and stereoblind observers. Vision Res. 14, 731–735 (1974)

  42. Wheatstone, C.: Contributions to the physiology of vision. I. On some remarkable and hitherto unobserved phenomena of binocular vision. Phil. Trans. B (II), 371–394 (1838)

  43. Wiesel, T.N., Hubel, D.H.: Single-cell responses in Striate cortex of kittens deprived of vision in one eye. J. Neurophysiol. 26, 1003–1017 (1963)

  44. Wohlgemuth, A.: On the after-effect of seen movement. Brit. J. Psychol. Monogr. Suppl. 1 (1911)

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mitchell, D.E., Reardon, J. & Muir, D.W. Interocular transfer of the motion after-effect in normal and stereoblind observers. Exp Brain Res 22, 163–173 (1975). https://doi.org/10.1007/BF00237686

Download citation

Key words

  • Stereopsis
  • Stereoblindness
  • Visual Deprivation
  • Interocular Transfer
  • Motion After-Effect