Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Depolarization exposes the voltage sensor of the sodium channels to the extracellular region

  • 51 Accesses

  • 12 Citations


Two domains of Na channels were mapped with site-specific antibodies raised in rabbit against synthetic peptides corresponding to a part of the voltage sensor of internal repeat 1C 1 + (amino acids 210–223) and to a region designated dipole (amino acids 1690–1699) of eel electroplax sodium channels. The antibodies bind to their respective domains in both purified and membrane-bound channels and immunoprecipitate the channels from eel electroplax and rat brain synaptosomes.

Anti-C 1 + depresses the action potential of rat sciatic nerve in a concentration-dependent way. It binds to the external side of rat brain synaptosomal vesicle, and its binding is potentiated by depolarization. Anti-dipole binds to the inner side of the vesicle, and the binding is inhibited by depolarization.

This is a preview of subscription content, log in to check access.


  1. Agnew, W.S., Rosenberg, R.L., Tomiko, S.A. 1986. Reconstitution of the sodium channels from Electrophorus electricus. In: Ion Channel Reconstitution. C. Miller, editor. pp. 307–336. Plenum, New York

  2. Aldrich, R.W., Stevens, C.F. 1987. Voltage dependent gating of sodium channels from mammalian neuroblastoma cells. J. Neurosci. 7:418–431

  3. Armstrong, C.M. 1981. Sodium currents and gating currents. Physiol. Rev. 61:644–683

  4. Barchi, R.L. 1988. Probing the molecular structure of the voltage dependent sodium channel. Annu. Rev. Neurosci. 11:455–495

  5. Barzilai, A., Rahamimoff, H. 1987. Stoichiometry of sodium-calcium exchanges in nerve terminals. Biochemistiy 26:6113–6118

  6. Bezanilla, F. 1985. Gating of sodium and potassium channels. J. Membrane Biol. 88:97–111

  7. Bruns, R.F., Lawson-Wendung, K., Pugsley, T.A. 1983. A rapid filtration assay for soluble receptors using polyethylen amine-treated filters. Anal. Biochem. 132:74–81

  8. Caldwell, J.H., Schaller, K.L. 1989. Isolation of novel Na channel genes by PCR gene amplification. Soc. Neurosci. 15:197a

  9. Catterall, W.A. 1988. Structure and function of voltage sensitiveion channels. Science 242:50–61

  10. Catterall, W.A. 1990. Molecular properties of voltage sensitive Na+ and Ca++ channels. Biophys. J. 57:195a

  11. Costa, M.R., Catterall, W.A. 1984. Cyclic AMP-dependent phosphorylation of the alpha subunit of the sodium channel in synaptic nerve ending particles. J. Biol. Chem. 259:8210–8218

  12. Duch, D.S., Levinson, S.R. 1987. Neurotoxin modulated uptake of sodium by highly purified preparation of the electroplax tetrodotoxin binding glycoprotein reconstituted into lipid vesicles. J. Membrane Biol. 98:43–55

  13. Ganetzki, B., Loughney, K. 1989. Alternative splicing generates distinct sodium channel subtypes in Drosophila. Soc. Neurosci. 15:196a

  14. Gasko, D.D., Knowles, A.F., Shertzer, H.C., Suolinna, E.H., Racker, E. 1976. The use of ion exchange resins for studying ion channel transport in biological systems. Anal. Biochem. 72:57–65

  15. Gordon, R.D., Fieles, W.E., Schotland, D.L., Hogue-Angeletti, R., Barchi, R.L. 1987. Topographical localization of the C-terminal of the voltage-dependent sodium channel from Electrophorus electricus using antibodies raised against a synthetic peptide. Proc. Natl. Acad. Sci. USA 84:308–312

  16. Gordon, R.D., Li, Y., Fieles, W.E., Schotland, D.L., Barchi, R.L. 1988. Topological localization of a segment of the eel voltage dependent sodium channel primary sequence (AA927–938) that discriminates models of tertiary structure. J. Neurosci. 8:3742–3749

  17. Greenblatt, R.E., Blatt, Y., Montal, M. 1985. The structure of the voltage sensitive sodium channels. Inferences derived from computer-aided analysis of the Electrophorus electricus channel primary structure. FEBS Lett. 193:125–134

  18. Guy, H.R. 1987. How sodium channels work—a molecular model. Curr. Topics Membr. Transp. 33:289–308

  19. Guy, H.R., Conti, F. 1990. Pursuing the structure and function of voltage-gated channels. Trends Neurosci. 13:201–206

  20. Guy, H.R., Seetharamulu, P. 1986. Molecular model of the action potential sodium channel. P roc. Natl. Acad. Sci. USA 83:508–512

  21. Hille, B. 1984. Ionic Channels of Excitable Membrane. pp. 426. Sinauer, Sunderland (MA)

  22. Hodgkin, A.L., Huxley, A.F. 1952. A quantitative description of membrane current and its application to conduction and excitation in nerve. J. Physiol. 116:500–544

  23. Kallen, R.G., Sheng, Z., Yank, J., Chen, L.Q., Fishbeck, K., Barchi, R.L. 1990. Primary structure and expression of a sodium channel characteristic of denervated and immature rat skeletal muscle. Neuron 4:233–242

  24. Kanner, B.I. 1980. Modulation of neurotransmitter transport by the activity of the action potential sodium ion in membrane vesicles from rat. Biochemistry 19:692–697

  25. Kayano, T., Noda, M., Flockerzi, V., Takahashi, A., Numa, S. 1988. Primary structure of the rat brain sodium channel III deduced from the cDNA sequence. FEBS Lett. 228:187–194

  26. Kosower, E.M. 1985. A structural and dynamic molecular model for the sodium channel of Electrophorus electricus. FEBS Lett. 182:235–242

  27. Kosower, E.M. 1991. Structure and dynamic molecular models for sodium channels. In: The Molecular Basis of Learning and Memory. Princeton University Press (in press)

  28. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

  29. Levinson, S.R., Duch, S.D., Urban, B.W., Recio-Pinto, E. 1986. The sodium channels from Electrophorus electricus. Ann. NY Acad. Sci. 479:162–178

  30. Lombet, A., Lazdunski, M. 1984. Characterization, solubilization, affinity labeling and purification of the cardiac sodium channel using Tityus toxin gamma. Eur. J. Biochem. 141:651–660

  31. Lowry, O.H., Rosenbrough, N.J., Farr, R.J., Randall, J. 1951. Protein measurement with the folin-phenol reagent. J. Biol. Chem. 193:265–275

  32. Meiri, H., Sammar, M., Schwartz, A. 1989. Production and use of synthetic peptide antibodies to map a region associated with sodium channel inactivation. Immunological techniques: Anti-idiotype antibodies and molecular mimicry. Methods Enzymol. 178:714–739

  33. Meiri, H., Spira, G., Sammar, M., Namir, M., Schwartz, A., Komoriya, A., Kosower, E.M., Palti, Y. 1987. Mapping a region associated with Na channel inactivation using antibodies to a synthetic peptide corresponding to a part of the channel. Proc. Natl. Acad. Sci. USA 84:5058–5062

  34. Merrifield, R.B. 1985. Solid phase synthesis. Angew. Chem. Int. Ed. Engl. 24:799–810

  35. Miller, C.M. 1986. How ion channel proteins work. In: Neuro-modulation: The Biochemical Control of Neuronal Excitability. L.K. Kaczmarek and I.B. Levitan, editor. Chap. 3, pp. 39–55. Oxford University Press, New York

  36. Noda, M., Idada, T., Suzuki, H., Takeshima, H., Takahashi, T., Kuno, M., Numa, S. 1986a. Expression of functional sodium channels from cloned cDNA. Nature 322:826–828

  37. Noda, M., Ikeda, T., Kayano, T., Suzuki, H., Takeshima, H., Kurasaki, M., Takahashi, H., Numa, S. 1986b. Existence of distinct sodium channel messenger RNA in rat brain. Nature 320:188–192

  38. Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Nakayama, H., Kanaoka, Y., Miniamino, N., Kangawa, K., Matsuo, H., Raftery, M.A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., Numa, S. 1984. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 312:121–127

  39. Pusch, M. 1990. Block of different cloned Na-channels by internal Mg++ and external Ca++. Biophys. J. 57:105a

  40. Reeves, S., Sutko, J.L. 1979. Na-Ca ion exchange in cardiac membrane vesicles. Biochemistry 76:590–594

  41. Rogart, R.B., Cribbs, L.L., Muglia, L.K., Kephalp, D.D., Kaiser, M.W. 1989. Molecular cloning of a putative TTX-resistant rat heart Na channel isoform. Proc. Natl. Acad. Sci. USA 86:8170–8174

  42. Rossie, S., Gordon, D., Catterall, W.A. 1987. Identification of an intracellular domain of the sodium channel having multiple cAMP-dependent phosphorylation sites. J. Biol. Chem. 262:17530–17539

  43. Salkoff, L., Butler, A., Wei, A., Scavarda, N., Baker, K., Pauron, D., Smith, C. 1987. Trends Neurosci. 10:522–527

  44. Salkoff, L., Butler, A., Wei, A., Scavarda, N., Giffen, K., Ilfune, C., Goodman, R., Mandel, G. 1987. Genomic organization and deduced amino acids sequence of a putative sodium channel gene in Drosophila. Science 237:744–748

  45. Schwartz, A., Palti, Y., Meiri, H. 1990. Structural and developmental differences between 3 types of Na channels in dorsal root ganglion of newborn rats. J. Membrane Biol. 116:117–128

  46. Stuhmer, W. 1990. Site directed mutagenesis on voltage gated channels. Biophys. J. 57:386a

  47. Stuhmer, W., Conti, F., Suzuki, H., Wang, X., Noda, M., Yahagi, N., Kubo, H., Numa, S. 1989. Structural parts involved in activation and inactivation of the sodium channel. Nature 339:597–603

  48. Suzuki, H., Beckh, S., Kubo, H., Yahagi, N., Ishida, H., Kayano, T., Noda, M., Numa, S. 1988. Functional expression of cloned cDNA encoding sodium channel III. FEBS Lett. 228:195–200

  49. Tosteson, M.T., Auld, D.S., Tosteson, D.C. 1989. Voltage gated channels formed in lipid bilayers by a positively charged segment of the Na-channel polypeptide. Proc. Natl. Acad. Sci. USA 86:707–710

  50. Trimmer, S., Jr., Cooperman, S.S., Tomiko, S.A., Zhou, J., Crean, S.M., Boyk, M.B., Galle, R.G., Sheng, Z., Barchi, R.L., Sigworth, F.J., Goodman, R.H., Agnew, W.S., Mandel, G. 1989. Primary structure and functional expression of a mammalian skeletal muscle sodium channel. Neuron 3:33–49

  51. Vassilev, P.M., Scheur, T., Catterall, W.A. 1988. Identification of an intracellular peptide segment involved in sodium channel inactivation. Science 241:1658–1660

  52. Wray, W., Boulikas, T., Wray, V.P., Hancock, R. 1981. Silver staining of proteins in polyacrylamid gels. Anal. Biochem. 118:197–203

Download references

Author information

Correspondence to Hamutal Meiri.

Additional information

We are most grateful to Dr. M.T. Tosteson (Harvard Medical School) for providing us with samples of the S4IV peptides. We wish to express our gratitude to Drs. D. Gordon (Hebrew University) and A. Safran (The Weizmann Institute) for helping in the immunoprecipitation procedure, to Drs. H. Rahamimoff (Hebrew University) and A. Barzilai (Columbia University) for advising us with the vesicle experiments, to Drs. D. Kassel and M. Gavish (Technion) for many fruitful discussions, and to Dr. Y. Palti (Technion) for discussions of electric field and suggesting the dipole peptide. This work was supported by a basic research fund (BRF) of The Israel Academy of Sciences #430.87 (H.M. and G.S.), a BSF Grant #84-00367 (H.M.) and The Henry Gutwirt Fund for the Promotion of Research-Technion VPR Fund #184-0093 (H.M.).

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sammar, M., Spira, G. & Meiri, H. Depolarization exposes the voltage sensor of the sodium channels to the extracellular region. J. Membarin Biol. 125, 1–11 (1992). https://doi.org/10.1007/BF00235793

Download citation

Key Words

  • sodium channels
  • antibodies to synthetic peptides
  • immunoprecipitation
  • eel electroplax
  • rat brain synaptosomes