Cell and Tissue Research

, Volume 205, Issue 2, pp 199–215 | Cite as

Scanning electron microscopic observations on the inner ear of the skate, Raja ocellata

  • V. C. Barber
  • C. J. Emerson


The inner ear of the skate, Raja ocellata, was examined by scanning electron microscopy. The otolithic membranes have a gelatinous component and an endogenous class of otoconia. Cupulae are reticulate in form. The morphology and polarization of sensory cell hair bundles are described for the various regions of the labyrinth, and are compared with published observations on other species. In the otolithic maculae, the more centrally located receptor cells generally have longer stereocilia than the peripheral cells. The hair bundles of the lacinia are similar to those of the central portion of the sacculus and differed from those of the rest of the utricular macula. Hair bundles in the peripheral regions of all maculae and cristae are similar. The polarization pattern of the utriculus is similar to that of teleosts, while that of the lagena is less clearly dichotomized. The receptor cells of most of the sacculus are oriented in a bivertical direction, with cells in the anterior portion, and a few in the posterior region, being aligned longitudinally. The significance of morphology and polarization with respect to the functions of the otolithic organs is discussed. The relationship of cell processes of the ampullary receptors to the cupula is briefly considered.

Key words

Inner ear Skate Macula Crista Cilia 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arenberg, I.K., Rauchbach, E.: Surgical production of endolymphatic hydrops: A scanning electron microscopic comparative study of the five normal and hydropic sensory regions of the lemon shark inner ear. In: Scanning Electron Microscopy/1973, (O. Johari and I. Corvin, eds.), pp. 419–426. Chicago, Illinois: IITRI 1973Google Scholar
  2. Barber, V.C.: The structure of mollusc statocysts, with particular reference to cephalopods. Symp. Zool. Soc. Lond. 23, 37–62 (1968)Google Scholar
  3. Barber, V.C., Emerson, C.J.: Techniques utilizing real time stereo scanning electron microscopy in the microdissection of biological tissues. J. Microsc. 115, 119–125 (1979a)Google Scholar
  4. Barber, V.C., Emerson, C.J.: Cupula-receptor cell relationships with evidence provided by SEM microdissection. In: Scanning Electron Microscopy/1979/III. pp. 939–948 (1979b)Google Scholar
  5. Boyde, A.: Pros and cons of critical point drying and freeze drying for SEM. In: Scanning Electron Microscopy/1978/II. (R.P. Becker and O. Johari, eds.), pp. 303–314. AMF O'Hare, Illinois: Scanning Electron Microscopy, Inc. 1978Google Scholar
  6. Boyde, A., Barber, V.C.: Freeze-drying methods for the scanning electron microscopical study of the protozoon Spirostomum ambiguum and the statocyst of the cephalopod mollusc Loligo vulgaris. J. Cell Sci. 4, 223–239 (1969)Google Scholar
  7. Boyde, A., Wood, C.: Preparation of animal tissues for surface-scanning electron microscopy. J. Microsc. 90, 221–249 (1969)Google Scholar
  8. Budelmann, B.U.: Equilibrium receptor systems in molluscs. In: Structure and function of proprioceptors in the invertebrates. (P.J. Mill, ed.), pp. 529–566. London: Chapman & Hall 1976Google Scholar
  9. Cohen, A.L., Marlow, D.P., Garner, G.E.: A rapid critical point method using fluorocarbons (“Freons”) as intermediate and transitional fluids. J. Microsc. (Paris) 7, 331–342 (1968)Google Scholar
  10. Corwin, J.T.: Morphology of the macula neglecta in sharks of the genus Carcharhinus. J. Morph. 152, 341–362 (1977)Google Scholar
  11. Corwin, J.T.: The relation of inner ear structure to the feeding behavior in sharks and rays. In: Scanning Electron Microscopy/1978/II. (R.P. Becker and O. Johari, eds.) pp. 1105–1112. AMF O'Hare, Illinois: Scanning Electron Microscopy, Inc. 1978Google Scholar
  12. Dale, T.: The labyrinthine mechanoreceptor organs of the cod Gadus morhua L. (Teleostei: Gadidae). Norw. J. Zool. 24, 85–128 (1976)Google Scholar
  13. Dohlman, G.F.: The shape and function of the cupula. J. Laryng. Otol. 83, 43–53 (1969)Google Scholar
  14. Dohlman, G.F.: The attachment of the cupulae, otolith and tectorial membranes to the sensory cell areas. Acta Otolaryngol. 71, 89–105 (1971)Google Scholar
  15. Flock, Å.: Transducing mechanisms in the lateral line canal organ receptors. Cold Spr. Harb. Symp. quant. Biol. 30, 133–145 (1965)Google Scholar
  16. Flock, Å., Duvall, A.J.: The ultrastructure of the kinocilium of the sensory cells in the inner ear and lateral line organs. J. Cell Biol. 25, 1–8 (1965)Google Scholar
  17. Flock, Å., Flock, B., Murray, E.: Studies on the sensory hairs of receptor cells in the inner ear. Acta Otolaryngol. 83, 85–91 (1977)Google Scholar
  18. Hillman, D.E.: Relationship of the sensory cell cilia to the cupula. In: Scanning Electron Microscopy/1977/II. (O. Johari and R.P. Becker, eds.), pp. 415–420 Chicago, Illinois: IITRI 1977Google Scholar
  19. Igarashi, M., Kanda, T.: Fine structure of the otolithic membrane in the squirrel monkey. Acta Otolaryngol. 68, 43–52 (1969)Google Scholar
  20. Jenkins, D.B.: A transmission and scanning electron microscopic study of the saccule in five species of catfishes. Amer. J. Anat. 154, 81–102 (1979)Google Scholar
  21. Lewis, E.R.: Structural-functional correlations in inner ear receptors. Proc. 30th Ann. EMSA 6, 64–65 (1972)Google Scholar
  22. Lewis, E.R., Li, C.W.: Evidence concerning the morphogenesis of saccular receptors in the bullfrog (Rana catesbeiana). J. Morph. 139, 351–361 (1973)Google Scholar
  23. Lim, D.J.: Ultrastructure of the otolithic membrane and the cupula. Adv. Oto-Rhino-Laryng 19, 35–49 (1973)Google Scholar
  24. Lim, D.J.: The statoconia of the non-mammalian species. Brain, Behav. Evol. 10, 37–51 (1974)Google Scholar
  25. Lim, D.J.: Morphological and physiological correlates in cochlear and vestibular sensory epithelia. In: Scanning Electron Microscopy/1976/II. (O. Johari and R.P. Becker, eds.), pp. 269–276. Chicago, Illinois: IITRI 1976Google Scholar
  26. Lim, D.J.: Ultra anatomy of sensory end-organs in the labyrinth and their functional implications. In: Proceedings of the Shambaugh Fifth International Workshop on Middle Ear Microsurgery and Fluctuant Hearing Loss (G.E. Shambaugh, Jr. and J.J. Shea, eds.) pp. 16–27. Huntsville, Alabama: Strode Publishers, Inc. 1977Google Scholar
  27. Lindeman, H.H.: Studies on the morphology of the sensory regions of the vestibular apparatus. Ergeb. Anat. Entwicklungsgesch. 42, 1–113 (1969)PubMedGoogle Scholar
  28. Lowenstein, O.: The labyrinth. In: Fish Physiology. Vol. V. Sensory systems and electric organs. (W.S. Hoar and D.J. Randall, eds.), pp. 207–240. New York: Academic 1971Google Scholar
  29. Lowenstein, O.: Comparative morphology and physiology. In: Handbook of sensory physiology, Vol. VI/1. (H.H. Kornhuber, ed.), pp. 75–120. Berlin: Springer-Verlag. 1974Google Scholar
  30. Lowenstein, O., Roberts, T.D.M.: The localization and analysis of the responses to vibration from the isolated elasmobranch labyrinth. A contribution to the problem of the evolution of hearing in vertebrates. J. Physiol. 114, 471–489 (1951)Google Scholar
  31. Lowenstein, O., Wersäll, J.: A functional interpretation of the electron microscopic structure of the sensory hairs in the cristae of the elasmobranch Raja clavata in terms of directional sensitivity. Nature (Lond.) 184, 1807–1810 (1959)Google Scholar
  32. Lowenstein, O., Osborne, M.P., Wersäll, J.: Structure and innervation of the sensory epithelia of the labyrinth in the Thornback ray (Raja clavata). Proc. Roy. Soc. Lond. B 160, 1–12 (1964)Google Scholar
  33. Millonig, G.: Advantages of a phosphate buffer for OsO4 solutions in fixation. J. Appl. Physiol. 32, 1637 (1961)Google Scholar
  34. Platt, C.: Hair cell distribution and orientation in goldfish otolith organs. J. Comp. Neur. 172, 283–297 (1977)Google Scholar
  35. Popper, A.N.: A scanning electron microscopic study of the sacculus and lagena in the ears of fifteen species of teleost fishes. J. Morph. 153, 397–417 (1977)Google Scholar
  36. Popper, A.N.: A comparative study of the otolithic organs in fishes. In: Scanning Electron Microscopy/1978/II. (R.P. Becker and O. Johari, eds.), pp. 405–416. AMF O'Hare, Illinois: Scanning Electron Microscopy, Inc. 1978Google Scholar
  37. Rauchbach, E., Arenberg, I.K.: Comparative scanning electron microscopic study of inner ear sensory hair cell regions of the lemon shark. Proc. 30th Ann. EMSA 6, 62–63 (1972)Google Scholar
  38. Rosenhall, U., Engström, B.: Surface structures of the human vestibular sensory regions. Acta OtoLaryng. Suppl. 319, 4–18 (1974)Google Scholar
  39. Sybers, H.D., Ashraf, M.: Preparation of cardiac muscle for SEM. In: Scanning Electron Microscopy/1973. (O. Johari and I. Corvin, eds.), pp. 341–348. Chicago, Illinois: IITRI 1973Google Scholar
  40. Tester, A.L., Kendall, J.I., Milisen, W.B.: Morphology of the ear of the shark genus Carcharhinus, with particular reference to the macula neglecta. Pac. Sci. 26, 264–274 (1972)Google Scholar
  41. Vilstrup, T.: On the formation of the otoliths. Ann. Otol. Rhinol. Laryng. 60, 974–981 (1951)Google Scholar
  42. Wersäll, J.: Morphology of the vestibular receptors in mammals. In: Basic aspects of central vestibular mechanisms. Progress in Brain Research. Vol. 37. (A. Brodal and O. Pompeiano, eds.), pp. 3–17. Amsterdam-London-New York: Elsevier 1972Google Scholar
  43. Wersäll, J., Bagger-Sjöbäck, D.: Morphology of the vestibular sense organ. In: Handbook of sensory physiology. Vol VI/1. (H.H. Kornhuber, ed.), pp. 123–170. Berlin: Springer-Verlag 1974Google Scholar
  44. Wersäll, J., Flock, Å., Lundquist, P.G.: Structural basis for directional sensitivity in cochlear and vestibular sensory receptors. Cold Spr. Harb. Symp. quant. Biol. 30, 115–132 (1965)Google Scholar

Copyright information

© Springer-Verlag 1980

Authors and Affiliations

  • V. C. Barber
    • 1
  • C. J. Emerson
    • 1
  1. 1.Department of BiologyMemorial University of NewfoundlandNewfoundlandCanada

Personalised recommendations