Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Ascending spinal systems in the nurse shark, Ginglymostoma cirratum

Summary

The ascending spinal systems in the nurse shark were studied after spinal hemisections by use of the Nauta and Fink-Heimer techniques. The dorsal funicular fibers form a single bundle issuing fibers to the gray substance of the spinal cord, the dorsal funicular nucleus, and the vestibular complex. Some dorsal funicular fibers also appear to contribute to the spinocerebellar tract.

The degenerated lateral funicular fibers are segregated into three fasciculi issuing fibers medially as they ascend through the brainstem. The largest target of these fibers is the reticular formation, but diffusely organized axons also reach 1) the gray matter of the spinal cord, 2) the dorsal motor nucleus of the vagus, 3) the nucleus “A” of the medulla oblongata, 4) the central gray substance of the brainstem, 5) the cerebellar cortex, 6) the cerebellar nucleus, 7) the nucleus intercollicularis, 8) the mesencephalic tectum, and 9) the dorsal thalamus. At the latter site the spinal input appears to partly overlap with the visual input.

The results, compared with the strikingly similar findings in other classes of vertebrates, indicate that all vertebrate groups apparently have the same basic components of ascending spinal projections.

This is a preview of subscription content, log in to check access.

References

  1. Ariëns Kappers CU (1920) Die Vergleichende Anatomie des Nervensystems der Wirbeltiere und des Menschen, I. Abschnitt. Bohn Haarlem, X + 624 pp

  2. Brodal A, Pompeiano O, Walberg F (1962) The Vestibular Nuclei and their Connections, Anatomy and Functional Correlations. Oliver and Boyd London

  3. Dräger UC, Hubel DH (1975) Responses to visual stimulation and relationship between visual, auditory and somatosensory inputs in mouse superior colliculus. J Neurophysiol. 38:690–713

  4. Ebbesson SOE (1966) Ascending fibre projections from the spinal cord in the tegu lizard, Tupinambis nigropunctatus. Anat Rec 154:341–342

  5. Ebbesson SOE (1967a) Ascending axon degeneration following hemisection of the spinal cord in the tegu lizard, Tupinambis nigropunctatus. Brain Res 5:178–206

  6. Ebbesson SOE (1967b) Retinal projections in two species of sharks (Galeocerdo cuvieri and Ginglymostoma cirratum). Anat Rec 157:238

  7. Ebbesson SOE (1969) Brainstem afferents from the spinal cord in a sample of reptilian and amphibian species. Ann of the New York Acad of Sci 167:80–101

  8. Ebbesson SOE (1970) Selective silver impregnation of degenerating axoplasm in poikilothermic vertebrates. In: Nauta WJH, Ebbesson SOE (eds) Contemporary Research Methods in Neuroanatomy. Springer Berlin Heidelberg New York, pp 132–161

  9. Ebbesson SOE (1972a) New insights into the organization of the shark brain. Comp Biochem Physiol 42A: 121–129

  10. Ebbesson SOE (1972b) A proposal for a common nomenclature for some optic nuclei in vertebrates and the evidence for a common origin of two such cell groups. Brain Behav Evol 6:75–91

  11. Ebbesson SOE (1976) Organization of the ranid spinal cord. In: Frog Neurobiology. Llinás R, Precht W (eds) Springer, Berlin Heidelberg New York, pp 679–706

  12. Ebbesson SOE (1978) Somatosensory pathways in lizards: the identification of the medial lemniscus and related structures. In: MacLean Paul D, Greenberg N (eds) Lizard Neurology and Behavior. DHEW Publication No (ADM) 77–491, pp 91–104

  13. Ebbesson SOE (1980a) Interspecific variability in brain organization and its possible relation to evolutionary mechanism. In: Laming P (ed) Brain Mechanisms of Behaviour in Lower Vertebrates. Cambridge University Press, 59–76

  14. Ebbesson SOE (1980b) The parcellation theory and its relation to interspecific variability in brain organization, evolutionary and ontogenetic development and neuronal plasticity. Cell Tiss Res 213:179–212

  15. Ebbesson SOE, Ramsey JS (1968) The optic tracts of two species of sharks: Galeocerdo and Ginglymostoma. Brain Res 8:36–53

  16. Ebbesson SOE, Rubinson K (1969) A simplified Nauta procedure. Physiol Behav 4:281–282

  17. Ebbesson SOE, Heimer L (1970) Projections of the olfactory tract fibres in the nurse shark, Ginglymostoma cirratum. Brain Res. 17:47–55

  18. Ebbesson SOE, Rubinson K (1971) Macrophotography of histological sections. Physiol Behav 7:261–262

  19. Ebbesson SOE, Schroeder DM (1971) Connections of the nurse shark's telencephalon. Science 173:254–256

  20. Ebbesson SOE, Jane JA, Schroeder DM (1972) A general overview of major interspecific variations in thalamic organization. Brain Behav Evol 6:92–130

  21. Ebbesson SOE, Campbell CBG (1973) On the organization of cerebellar efferent pathways in the nurse shark, Ginglymostoma cirratum. J Comp Neurol 152:233–254

  22. Ebbesson SOE, Northcutt RG (1975) Neurology of Anamniotic Vertebrates. In: (Masterton et al eds) Evolution of the Nervous System and Behavior. Lawrence Erlbaum Associates, pp 115–146

  23. Ebbesson SOE, Goodman DC (1980) The organization of ascending spinal projections in Caiman crocodilus. Cell Tiss Res, in press

  24. Fernstrom RCA (1958) A durable Nissl Stain for frozen and paraffin sections. Stain Technol 33:175–176

  25. Fink RP, Heimer L (1967) Two methods for selective silver impregnation of degenerating axons and their synaptic endings in the central nervous system. Brain Res 4:369–374

  26. Hayle TH (1973a) A comparative study of spinal projections to the brain (except cerebellum) in three classes of poikilothermic vertebrates. J Comp Neurol 149:463–476

  27. Hayle TH (1973b) A comparative study of spino-cerebellar systems in three classes of poikilothermic vertebrates. J Comp Neurol 149:477–496

  28. Herrick CJ (1948) The brain of the tiger salamander. University Chicago Press Chicago

  29. Hoevell JJLD van (1911) Remarks on the reticular cells of the oblongata in different vertebrates. Proc Acad Sci (Amsterdam) 13:1047–1065

  30. Jacobs VL (1968) An experimental study of the course and termination of the spino-cerebellar system in a lizard (Lacerta viridis). Brain Res 11:154–176

  31. Karten H (1963) Ascending pathways from the spinal cord in the pigeon, Columba livia. Proc 16th Congr Zool Washington DC 2:23 (Abstract)

  32. Kooy FH (1917) The inferior olive in vertebrates. Folia Neurobiol (Leipzig) 10:205–369

  33. Lorente de Nó R (1924) Etudes sur le cerveau postérieur. III. Sur les connexions extra-cerebelleuses des fascicules afférents au cerveau, et sur la fonction de cet organe. Trav Lab Rech Biol Univ Madr 22:51–65

  34. Mehler WR (1957) The mammalian “pain tract” in phylogeny. Anat Rec 127:332

  35. Mehler WR, Feferman ME, Nauta WJH (1960) Ascending axon degeneration following anterolateral cordotomy: an experimental study in the monkey. Brain 38:718–750

  36. Nauta WJH (1957) Silver impregnation of degenerating axons. In: Windle WF (ed) New Research Techniques of Neuroanatomy. Thomas Springfield Ill, pp 17–26

  37. Rohon JV (1878) Das Centralorgan des Nervensystems der Selachier. Denkschr. Kaiserl Akad Wiss, Math-Naturwiss Kl 38:43–109

  38. Smeets WJAJ, Nieuwenhuys R (1976) Topological analysis of the brainstem of the sharks Squalus acanthias and Scyliorhinus canicula. J Comp Neurol 165:333–368

  39. Stein BE, Arigbede MO (1972) Unimodal and multimodal response properties of neurons in the cat's superior colliculus. Exptl Neurol 36:179–196

Download references

Author information

Correspondence to Prof. Sven O. E. Ebbesson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ebbesson, S.O.E., Hodde, K.C. Ascending spinal systems in the nurse shark, Ginglymostoma cirratum . Cell Tissue Res. 216, 313–331 (1981). https://doi.org/10.1007/BF00233622

Download citation

Key words

  • Ascending spinal systems
  • Elasmobranch brain
  • Comparative neuroanatomy
  • Selective silver impregnation