Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Induction of a plasmodial stage of Physarum without plasmalemma invaginations


Experimentally generated protoplasmic drops of Physarum show time-dependent differentiation processes, i.e. regeneration of plasmalemma, actomyosin fibrillogenesis and regeneration of the plasmalemma invagination system. According to Hatano (1970), caffeine treatment of drops results in a pinching off process of small translucent droplets in which specific effects of Ca++ on protoplasmic streaming phenomena were demonstrated. The light and electron microscopic investigation of the original drop reveal that the time-dependent differentiation processes, e.g. actomyosin fibrillogenesis, are not inhibited by caffeine. However, caffeine hinders the regeneration of the plasmalemma invaginations in the original drop (up to a drop age of 30–40 min). The experimental advantage of this stage of Physarum with full vitality, but without plasmalemma invaginations is discussed.

This is a preview of subscription content, log in to check access.


  1. Achterath, M.: Reaction of glycerinated protoplasmic drops of Physarum polycephalum on addition of ATP. Cytobiologie 1, 169–183 (1969)

  2. Beck, R., Komnick, H., Stockem, W., Wohlfarth-Bottermann, K.E.: Extensive fibrillar protoplasmic differentiations and their significance for protoplasmic streaming. V. Contraction, ATP ase activity and fine structure of actomyosin-threads from Physarum polycephalum. Cytobiologie 2, 259–274 (1970)

  3. Camp, W.G.: A method of cultivating myxomycete plasmodia. Bull. Torrey Bot. Club 63, 205–210 (1936)

  4. Daniel, J.W., Rusch, H.P.: The pure culture of Physarum polycephalum on a partially defined soluble medium, J. Gen. Microbiol. 25, 47–59 (1961)

  5. Götz von Olenhusen, K., Wohlfahrth-Bottermann, K.E.: Effects of caffeine and D2O on persistence and de novo generation of intrinsic oscillatory contraction automaticity of Physarum. Cell Tissue Res. 197, 479–499 (1979)

  6. Gordon, W.E.: Immunofluorescent and ultrastructural studies of “sarcomeric” units in stress fibrils of cultured non-muscle cells. Exp. Cell Res. 117, 253–260 (1978)

  7. Hatano, S.: Specific effect of Ca2+ on movement of plasmodial fragment obtained by caffeine treatment. Exp. Cell Res. 61, 199–203 (1970)

  8. Hatano, S., Oosawa, F.: Isolation and characterization of plasmodium actin. Biochim. Biophys. Acta 127, 488–498 (1966)

  9. Hatano, S., Oosawa, F.: Movement of cytoplasm in plasmodial fragment obtained by caffeine treatment. I. Its Ca2+ sensitivity. J. Physiol. Soc. Jpn. 33, 589–590 (1971)

  10. Hauser, M.: Demonstration of membrane associated and oriented microfilaments in Amoeba proteus by means of a Schiff base glutaraldehyde fixative. Cytobiologie 18, 95–106 (1978)

  11. Hinssen, H., D'Haese, J.: Synthetic fibrils from Physarum actomyosin selfassembly, organization and contraction. Cytobiologie 13, 132–157 (1976)

  12. Hülsmann, N., Wohlfarth-Bottermann, K.E.: Spatio-temporal analysis of contraction dependent surface movements in Physarum polycephalum. Cytobiologie 17, 23–41 (1978a)

  13. Hülsmann, N., Wohlfarth-Bottermann, K.E.: Spatio-temporal relationships between protoplasmic streaming and contraction activities in plasmodial veins of Physarum polycephalum. Cytobiologie 17, 317–334 (1978b)

  14. Isenberg, G., Wohlfarth-Bottermann, K.E.: Transformation of cytoplasmic actin. Importance for the organization of the contractile gel reticulum and the contraction-relaxation cycle of cytoplasmic actomyosin. Cell Tissue Res. 173, 495–528 (1976)

  15. Kamiya, N.: Protoplasmic streaming. Protoplasmatologia VIII, 3, Wien: Springer 1959

  16. Kamiya, N.: Contractile properties of the plasmodial strand. Proc. Japan. Acad. 46, 1026–1031 (1970)

  17. Kuroda, K.: Movement of cytoplasm in a membrane-free system. Yamada Conference on Cell Motility, Nagoya 1978 (in press)

  18. Kushida, H.: A styrene metacrylate resin embedding method for ultrathin sectioning. J. Electron Microsc. (Tokyo) 10, 16–19 (1961)

  19. Mathews, L.M.: Ca2+ regulation in caffeine-derived microplasmodia of Physarum polycephalum. J. Cell Biol. 77, 502–505 (1977)

  20. Nagai, R., Kamiya, N.: Movement of the myxomycete plasmodium. Electron microscopic studies on fibrillar structures in the plasmodium. Proc. Japan Acad. 42, No. 8 (1966)

  21. Stockem, W., Komnick, H.: Erfahrungen mit Styrol-Methacrylat-Einbettungen als Routinemethode für Licht- und Elektronenmikroskopie. Mikroskopie 26, 199–203 (1970)

  22. Ueda, T., Götz von Olenhusen, K., Wohlfarth-Bottermann, K.E.: Reaction of the contractile apparatus in Physarum to injected Ca++, ATP, ADP and 5'AMP. Cytobiologie 18, 76–94 (1978)

  23. Wohlfarth-Bottermann, K.E.: Die Kontrastierung tierischer Zellen und Gewebe im Rahmen ihrer elektronenmikroskopischen Untersuchung an ultradünnen Schnitten. Naturwissenschaften 44, 287 (1957)

  24. Wohlfarth-Bottermann, K.E.: Weitreichende fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmastörung. I. Elektronenmikroskopischer Nachweis und Feinstruktur. Protoplasma 54, 514–539 (1962)

  25. Wohlfarth-Bottermann, K.E.: Weitreichende fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung. II. Lichtmikroskopische Darstellung. Protoplasma 57, 747–761 (1963)

  26. Wohlfarth-Bottermann, K.E.: Differentiations of the ground cytoplasm and their significance for the generation of the motive force of amoeboid movement. In: Primitive Motile Systems in Cell Biology (R.D. Allen and N. Kamiya, eds.), pp. 79–109, New York: Academic Press 1964

  27. Wohlfarth-Bottermann, K.E.: Weitreichende fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung. III. Entstehung und experimentell induzierbare Musterbildungen. Roux' Archiv f. Entwicklungsmechanik 156, 371–403 (1965)

  28. Wohlfarth-Bottermann, K.E.: Plasmalemma invaginations as characteristic constituents of plasmodia Physarum polycephalum. J. Cell Sci. 16, 23–37 (1974)

  29. Wohlfarth-Bottermann, K.E.: Oscillating contractions in protoplasmic strands of Physarum: simultaneous tensiometry of longitudinal and radial rhythms, periodicity analysis, and temperature dependence. J. Exp. Biol. 67, 49–59 (1977)

  30. Wohlfarth-Bottermann, K.E.: Oscillating contraction activity in Physarum. J. Exp. Biol. (in press, 1979)

  31. Wohlfarth-Bottermann, K.E., Götz von Olenhusen, K.: Oscillating contractions in protoplasmic strands of Physarum: effects of external Ca++-depletion and Ca++-antagonistic drugs on intrinsic contraction automaticity. Cell Biol. Int. Rep. 1, 239–247 (1977)

  32. Wohlfarth-Bottermann, K.E., Stockem, W.: Die Regeneration des Plasmalemms von Physarum polycephalum. Wilhelm Roux' Archiv 164, 321–340 (1970)

Download references

Author information

Correspondence to Prof. Dr. K. E. Wohlfarth-Bottermann.

Additional information

The authors wish to thank Dr. R.L. Snipes for reading the manuscript and Mrs. B. Koeppen for technical assistance

Rights and permissions

Reprints and Permissions

About this article

Cite this article

von Olenhusen, K.G., Jücker, H. & Wohlfarth-Bottermann, K.E. Induction of a plasmodial stage of Physarum without plasmalemma invaginations. Cell Tissue Res. 197, 463–477 (1979).

Download citation

Key words

  • Cytoplasmic actomyosin
  • Plasmalemma
  • Caffeine
  • Physarum polycephalum