Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Regulation of epithelial shunt conductance by the peptide leucokinin

Summary

Isolated Malpighian tubules of the yellow fever mosquito Aedes aegypti spontaneously secrete NaCl, KCl and water across an epithelium of modest transepithelial resistance (40–80 Ωcm2) and high transepithelial voltage (30–70 mV, lumen positive). Transepithelial electrochemical potentials indicate that Na and K are secreted by active and Cl by passive transport mechanisms. The addition of synthetic leucokinin-VIII (LK-VIII, insect myotropic peptide) to the peritubular bath significantly increases the rates of transepithelial NaCl, KCl and water secretion. In parallel, LK-VIII depolarizes the transepithelial voltage from 59.3 to 5.7 mV, decreases the transepithelial resistance from 57.7 to 9.9 Ωcm2, and renders the basolateral and apical membrane voltages nearly equipotential (∼ −90 mV). Unilateral step changes of the [Cl] in the peritubular bath or tubule lumen elicit small transepithelial Cl diffusion potentials in the absence of LK-VIII but large transepithelial Cl diffusion potentials, up to 85% of Nernst equilibrium potentials, in the presence of LK-VIII. In Malpighian tubules treated with dinitrophenol for estimates of the shunt resistance R sh, LK-VIII reduces R sh from 52.5 to 5.8 ωcm2. Bilateral reductions of the Cl concentration in tubule lumen and peritubular bath fully restore R sh to 55.8 Ωcm2in the presence of LK-VIII. LK-VIII has no effects when presented from the luminal side. These results suggest that LK-VIII increases the Cl conductance of the epithelial shunt via a receptor located at the basolateral side of the epithelium.

This is a preview of subscription content, log in to check access.

References

  1. Bertram, G., Schleithoff, L., Zimmermann, P., Wessing, A. 1991. BafilomycinA1 is a potent inhibitor of urine formation by Malpighian tubules of Drosophila hydei: Is a vacuolar type ATPase involved in ion and fluid secretion? J. Insect Physiol. 37:201–209

  2. Beyenbach, K.W., Frömter, E. 1985. Electrophysiological evidence for Cl secretion in shark renal proximal tubules. Am. J. Physiol. 248:F282–295

  3. Beyenbach, K.W., Petzel, D.H. 1987. Diuresis in mosquitoes: role of a natriuretic factor. News Physiol. Sci. 2:1171–1175

  4. Beyenbach, K.W., Koeppen, B.M., Dantzler, W.H., Helman, S.I. 1980. Na concentration and the electrical properties of the snake distal tubules. Am. J. Physiol. 239:F412-F419

  5. Burg, M., Grantham, J., Abramow, M., Orloff, J. 1966. Preparation and study of fragments of single rabbit nephrons. Am. J. Physiol. 210:1293–1298

  6. Cohen, S.A., Tarvin, T.L., Bidlingmeyer, B.A. 1984. Analysis of amino acids using precolumn derivatization with phenylisothiocyanate. Amer. Lab. 16:48–53

  7. Erspamer, V. 1981. The tachykinin peptide family. Trend. Neurosci. 4:267–269

  8. Hayes, T.K., Pannabecker, T.L., Hinckley, D.J., Holman, G.M., Nachman, R.J., Petzel, D.H., Beyenbach, K.W. 1989. Leucokinins, a new family of ion transport stimulators and inhibitors in insect Malpighian tubules. Life Sci. 44:1259–1266

  9. Helman, S.I. 1972. Determination of electrical resistance of the isolated cortical collecting tubule and its possible anatomical location. Yale J. Biol. Med. 45:339–345

  10. Holman, G.M., Cook, B.J., Nachman, R.J. 1986a. Isolation, primary structure and synthesis of two neuropeptides from Leucophaea madera: Members of a new family of cephalomyotropins. Comp. Biochem. Physiol. 84C:205–211

  11. Holman, G.M., Cook, B.J., Nachman, R.J. 1986b. Primary structure and synthesis of two additional neuropeptides from Leucophaea maderae: Members of a new family of cephalomyotropins. Comp. Biochem. Physiol. 84C:271–276

  12. Holman, G.M., Cook, B.J., Nachman, R.J. 1987a. Isolation, primary structure, and synthesis of leucokinins V and VI: Myotropic peptides of Leucophaea maderae. Comp. Biochem. Physiol. 88C:27–30

  13. Holman, G.M., Cook, B.J., Nachman, R.J. 1987b. Isolation, primary structure, and synthesis of leucokinins VII and VIII: The final members of this new family of cephalomyotropic peptides isolated from head extracts of Leucophaea maderae. Comp. Biochem. Physiol. 88C:31–34

  14. Holman, G.M., Nachman, R.J., Schoofs, L., Hayes, T.K., Wright, M.S., DeLoof, A. 1991. The Leucophaea maderae hindgut preparation: A rapid and sensitive bioassay tool for the isolation of insect myotropins of other insect species. Insect Biochem. 21:107–112

  15. Hudson, D., Kain, K., Ng, D. 1986. High yielding fully automatic synthesis of oecropin A amide and analogues. In: Peptide Chemistry. Y. Kiso, editor. pp 413–418. Osaka Protein Research Foundation, Osaka, Japan

  16. Isaacson, L.C., Nicolson, S.W., Fisher, D.W. 1989. Electrophysiological and cable parameters of perfused Malpighian tubules. Am. J. Physiol. 257:R1190-R1198

  17. Lord, B.A.P., DiBona, D.R. 1976. Role of the septate junction in the regulation of paracellular transepithelial flow. J. Cell. Biol. 71:967–972

  18. Maddrell, S.H.P. 1978. Transport across insect excretory epithelia. In: Membrane Transport in Biology, G. Giebisch, D.C. Tosteson, H.H. Ussing, editors. pp 239–272. Springer Verlag, New York

  19. Pannabecker, T.L., Aneshansley, D.J., Beyenbach, K.W. 1992. Unique electrophysiological effects of dinitrophenol in Malpighian tubules. Am. J. Physiol. 263:R609–614

  20. Petzel, D., Hagedorn, H.H., Beyenbach, K.W. 1985. Preliminary isolation of mosquito natriuretic factor. Am. J. Physiol. 249:R379-R386

  21. Petzel, D., Hagedorn, H.H., Beyenbach, K.W. 1986. Peptide nature of mosquito natriuretic factor. Am. J. Physiol. 250:R328-R332

  22. Petzel, D.H., Berg, M.M., Beyenbach, K.W. 1987. Hormone-controlled, cAMP-mediated fluid secretion in yellow fever mosquito. Am. J. Physiol. 253:R701-R711

  23. Phillips, J. 1981. Comparative physiology of insect renal function. Am. J. Physiol. 241:R241-R257

  24. Phillips, J. 1983. Endocrine control of salt and water balance: secretion. In: Endocrinology of Insects, R.G.H. Downer, H. Laufer, editors. pp 411–425. Alan Liss, New York

  25. Pilcher, D. 1970. The influence of the diuretic hormone on the process of urine secretion by the Malpighian tubules of Carausius morosus. J. Exp. Biol. 53:465–484

  26. Pollard, H.B., Creutz, C.E., Pazoles, C.J., Hansen, J. 1977. Caclium-binding properties of monovalent anions commonly used to substitute for chloride in physiological salt solutions. Anal. Biochem. 83:311–314

  27. Ramsay, J.A. 1954. Active transport of water by the Malpighian tubules of the stick insect, Dixippus morosus (Orthoptera, Phasmidae). J. Exp. Biol. 31:1004–113

  28. Ussing, H.H., Windhager, E.E. 1964. Nature of shunt path and active sodium transport path through frog skin epithelium. Acta Physiol. Scand. 61:484–504

  29. Wieczorek, H., Weerth, S., Schindlbeck, M., Klein. U. 1989. A vacuolar-type proton pump in a vesicle fraction enriched with potassium transporting plasma membranes from tobacco hornworm midgut. J. Biol. Chem. 264:11143–11148

  30. Williams, J.C., Jr., Beyenbach, K.W. 1983. Differential effects of secretagogues on Na and K secretion in Malpighian tubules of Aedes aegypti. J. Comp. Physiol. 149:511–517

  31. Williams, J.C., Jr., Beyenbach, K.W. 1984. Differential effects of secretagogues on the electrophysiology of the Malpighian tubules of the yellow fever mosquito. J. Comp. Physiol. 154:301–309

  32. Yonath, J., Civan, M.M. 1971. Determination of the driving force for the Na pump in toad bladder by means of vasopressin. J. Membrane Biol. 5:366–385

Download references

Author information

Additional information

This work was supported by a USDA grant 89-37250-4519 awarded to Dr. Pannabecker and by NSF grant DCB 8403305 awarded to Dr. Beyenbach. The experimental work is primarily the effort of Dr. Pannabecker over a three-year period of postdoctoral training in the laboratory of Dr. Beyenbach. The authors would like to thank Mr. David Hinckley, Ms. Faith Andrews, and Ms. Agueda Oviedo for their assistance in some of the experiments and Mr. F. Dräger (MPI, Dortmund, Germany) for assistance in graphical work. We thank Mr. John Hunt and the Department of Materials Sciences, College of Engineering, Cornell University, for the use of the JOEL 733 electron probe, and Dr. George Kidder for stimulating and fruitful discussions. The manuscript was written by K.W. Beyenbach at the Max Planck Institute für Systemphysiologie, Dortmund, Germany, and was supported by the Humboldt Stiftung of Germany.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Pannabecker, T.L., Hayest, T.K. & Beyenbach, K.W. Regulation of epithelial shunt conductance by the peptide leucokinin. J. Membarin Biol. 132, 63–76 (1993). https://doi.org/10.1007/BF00233052

Download citation

Key Words

  • Malpighian tubule
  • myotropic and diuretic peptides
  • leucokinin-VIII
  • epithelial shunt pathway chloride conductance
  • dinitrophenol