Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Arginyl residues and anion binding sites in proteins

  • 199 Accesses

  • 177 Citations

Summary

The functions of a number of amino acid residues in proteins have been studied by chemical modification techniques and much useful information has been obtained. Methods using dicarbonyl compounds for the modification of arginine residues are the most recent to have been developed. Since their introduction about 10 years ago, they have led to the identification of a large number of enzymes and other proteins that contain arginine residues critical to biological function. These reagents are discussed in terms of their chemical reactivity and mechanisms of action and in relation to the unique chemical properties of the guanidinium group. Butanedione, phenylglyoxal and cyclohexanedione are the most commonly employed arginyl reagents, and their relative advantages are examined. A survey of the functional role of arginine residues in enzymes and other proteins is presented in which nearly 100 examples are cited. The prediction that arginine residues would be found to serve a general role as anionic binding sites in protein has obviously been validated. The genetic and physiological implications of the selection of arginine for this important function are discussed.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Herriott, R., 1947. Advances in Protein Chem. 3, 169–225.

  2. 2.

    Olcott, H. S. and Fraenkel-Conrat, H., 1947. Chem. Rev. 41, 151–197.

  3. 3.

    Boyer, P. D., 1959 in The Enzymes (Boyer, P. D., Lardy, H. A. and Myrback, K, Eds.) 2nd Ed. pp. 511–188. Academic Press, New York.

  4. 4.

    Hartley, B. S., 1960. Annu. Rev. Biochem. 29, 45–72.

  5. 5.

    Riordan, J. F. and Sokolovsky, M., 1971. Accounts Chem. Res. 4, 353–360.

  6. 6.

    Vallee, B. L. and Riordan, J. F., 1969. Annu. Rev. Biochem. 38, 733–794.

  7. 7.

    Itano, H. A. and Gottlieb, A. J., 1963. Biochem. Biophys. Res. Commun. 12, 405–408.

  8. 8.

    King, T. P., 1966. Biochemistry 5, 3454–3459.

  9. 9.

    Yankeelov, J. A., Jr., Kochert, M., Page, J. and Westphal, A., 1966 Fed. Proc. 25, 590.

  10. 10.

    Yankeelov, J. A., Jr., Mitchell, C. D., and Crawford, T. H., 1968. J. Am. Chem. Soc. 90, 1665–1666.

  11. 11.

    Vallee, B. L. and Riordan, J. F., 1968. Brookhaven Symp. Biol. 21, 91–119.

  12. 12.

    Takahashi, K., 1968. J. Biol. Chem. 243, 6171–6179.

  13. 13.

    Gund, P., 1972. J. Chem. Ed. 49, 100–103.

  14. 14.

    Cotton, F. A., Day, V. W., Hazen, E. E., Jr., and Larsen, S., 1973. J. Am. Chem. Soc. 95, 4834–4840.

  15. 15.

    Toi, K., Bynum, E., Norris, E. and Itano, H. A., 1967. J. Biol. Chem. 242, 1036–1043.

  16. 16.

    Signor, A., Bonora, G. M., Biondi, L., Nisato, D., Marzotto, A. and Scoffone, E., 1971. Biochemistry 10, 2748–2752.

  17. 17.

    Grossberg, A. L. and Pressman, D., 1968. Biochemistry 7, 272–279.

  18. 18.

    Yankeelov, J. A., Jr., 1970. Biochemistry 9, 2433–2439.

  19. 19.

    Riordan, J. F., 1970. Fed. Proc. 29, 462.

  20. 20.

    Riordan, J. F., 1973. Biochemistry 12, 3915–3923.

  21. 21.

    Cornforth, J. W. and Huang, H. T., 1984. J. Chem Soc. 731–735.

  22. 22.

    Diels, O. and Schleich, K., 1916. Ber. 49, 1711–1721.

  23. 23.

    Pauly, H. and Sauter, H. 1930. Ber. 63, 2063–2069.

  24. 24.

    Roy, G. L., Laferriere, A. L. and Edwards, J. O., 1957. J. Inorg. Nucl. Chem. 4, 106–110.

  25. 25.

    Dietl, T. and Tschesche, H., 1976. Hoppe-Seyler's Z. Physiol. Chem. 357, 657–665.

  26. 26.

    Gawron, O. and Jones, L., 1977. Biochim. Biophys. Acta 484, 453–464.

  27. 27.

    Kazarinoff, M. N. and Snell, E. E., 1976. J. Biol. Chem. 251, 6179–6182.

  28. 28.

    Schubert, M. P., 1935. J. Biol. Chem. 111, 671–678.

  29. 29.

    Lange, L. G., III, Riordan, J. F., and Vallee, B. L., 1974. Biochemistry 13, 4361–4370.

  30. 30.

    Borders, C. L. and Riordan, J. F., 1975. Biochemistry 14, 4699.

  31. 31.

    Ryang, H.-S. and Wang, S. Y., 1978. J. Am. Chem. Soc. 100, 1302–1303.

  32. 32.

    Rubin, M. B. and Inbar, S., 1978. J. Am. Chem. Soc. 100, 2266–2268.

  33. 33.

    Harden, A. and Norris, D. 1911. J. Physiol. 42, 332–336.

  34. 34.

    Voges, O. and Proskauer, B., 1898. Z. Hyg. InfektKr. 28, 20.

  35. 35.

    Sakaguchi, S., 1925. J. Biochem., Tokyo 5, 25, 133.

  36. 36.

    Dixon, H. B. F. and Fields, R., 1972. Methods in Enzymol. 25, 409–419.

  37. 37.

    Lange, L. G., III, Riordan, J. F., Vallee, B. L. and Bränden, C.-I., 1975. Biochemistry 14, 3497–3502.

  38. 38.

    Jörnvall, H., Lange, L. G., III, Riordan, J. F. and Vallee, B. L., 1977. Biochem. Biophys. Res. Commun. 77, 73–78.

  39. 39.

    Weng, L., Heinrikson, R. L. and Westley, J., 1978. J. Biol. Chem. 253, 8109–8119.

  40. 40.

    Cheung, S.-T. and Fonda, M. L., 1978. Fed. Proc. 37, 1331.

  41. 41.

    Patthy, L. and Smith, E. L., 1975. J. Biol. Chem. 250, 557–564;565–569.

  42. 42.

    Liu, W. H., Feinstein, G., Osuga, D. T., Haynes, R. and Feeney, R. E., 1968. Biochemistry 7, 2886–2892.

  43. 43.

    Austen, B. M. and Smith, E. L., 1976. J. Biol. Chem. 251, 5835.

  44. 44.

    Borders, C. L., Jr., Pearson, L. J., McLaughlin, A. E., Vasiloff, J., Gustafson, M. E. and Morgan, D. J., 1978. Fed. Proc. 37, 1325.

  45. 45.

    Gilbert, H. F. and O'Leary, M. H., 1975. Biochemistry 14, 5194–5198.

  46. 46.

    Vetter-Deichtl, H., Vetter, W., Richter, W. and Biemann, K., 1968. Experientia 24, 340–341.

  47. 47.

    Lipscomb, W. N., 1970. Accounts Chem. Res. 3, 81–89.

  48. 48.

    Nakagawa, S. and Umeyama, H., 1978. J. Am. Chem. Soc. 100, 7716–7725.

  49. 49.

    Auld, D. S. and Holmquist, B., 1974. Biochemistry 13, 4355–4361.

  50. 50.

    Werber, M. M. and Sokolovsky, M., 1972. Biochem. Biophys. Res. Commun. 48, 384–390.

  51. 51.

    Werber, M. M., Moldovan, M. and Sokolovsky, M., 1975. Eur. J. Biochem. 53, 207–216.

  52. 52.

    Kuhn, R. W., Walsh, K. A. and Neurath, H., 1976. Biochemistry 15, 4881–4885.

  53. 53.

    Banning, P., Holmquist, B. and Riordan, J. F., 1978. Biochem. Biophys. Res. Commun. 83, 1442–1449.

  54. 54.

    Crifo, C. Santoro, L., Rinaldi, A. and DeMarco, C., 1977. Mol. Cell. Biochem. 17, 7–9.

  55. 55.

    Riordan, J. F. and Scandurra, R., 1975. Biochem. Biophys. Res. Commun. 66, 417–423.

  56. 56.

    Gilbert, H. F. and O'Leary, M. H., 1975. Biochem. Biophys. Res. Commun. 67, 198–202.

  57. 57.

    Azaryan, A. V., Mekhanik, M. L., Egorov, Ts. A. and Torchinskii, Yu. M., 1978. Biokhimiya 43, 686–695.

  58. 58.

    Braunstein, A. E., 1973. In The Enzymes (Boyer, P.D. Ed.) 3rd Ed. pp. 379–481. Academic Press, New York.

  59. 59.

    Pollack, S. E. and Russell, C. S., 1978. FEBS Lett. 90, 47–50.

  60. 60.

    Chatagner, F. and Pierre, Y., 1977. FEBS Lett. 81, 335–338.

  61. 61.

    Gawron, O. and Jones, L., 1977. Biochim. Biophys. Acta 484, 453–464.

  62. 62.

    Ehrlich, R. S. and Colman, R. F., 1977. Biochemistry 16, 3378–3383.

  63. 63.

    Hayman, S. and Colman, R. F., 1978. Biochemistry 17, 4161–4168.

  64. 64.

    Riordan, J. F., McElvany, K. D. and Borders, C. L., Jr., 1977. Science 195, 884–886.

  65. 65.

    Marcus, F., 1976. Biochemistry 15, 3505–3509.

  66. 66.

    Marcus, F., 1975, Biochemistry 14, 3916–3921.

  67. 67.

    Branden, C. I., Eklund, H., Nordstrom, B., Boiwe, T., Soderlund, G.; Zeppezauer, E., Ohlsson, I., and Abeson, A., 1973. Proc. Nat. Acad. Sci. U.S. 70, 2439–2442.

  68. 68.

    Zeppezauer, E., Jornvall, H., Ohlsson, F., 1975. Eur. J. Biochem. 58, 95–104.

  69. 69.

    Foster, M. and Harrison, J. H., 1974. Biochem. Biophys. Res. Commun. 58, 263–267.

  70. 70.

    Bleile, D. M., Foster, M., Brady, J. W. and Harrison, J. H., 1975. J. Biol. Chem. 250, 6222–6227.

  71. 71.

    Yang, P. C. and Schwert, G. W., 1972. Biochemistry 11, 2218–2224.

  72. 72.

    Nagradova, N. K. and Asryants, R. A., 1975. Biochim. Biophys. Acta 386, 365–368.

  73. 73.

    Nagradova, N. K., Asryants, R. A., Benkevich, N. V. and Safronova, M. I., 1976. FEBS Lett. 69, 245–248.

  74. 74.

    Blumenthal, K. M., and Smith, E. L., 1975. J. Biol. Chem. 250, 6555–6559.

  75. 75.

    Pal, P. K. and Colman, R. F., 1976. Eur. J. Biochem. 68, 437–443.

  76. 76.

    David, M., Rashed, I. and Sund, H., 1976. FEBS Lett. 62, 288–292.

  77. 77.

    Levy, H. R., Ingulli, J. and Afolayan, A., 1977. J. Biol. Chem. 252, 3745–3751.

  78. 78.

    Davidson, W. S. and Flynn, T. G., 1978. Fed. Abstr. 37, 1320.

  79. 79.

    Buehner, M., Ford, G. C., Moras, D., Olsen, K. W. and Rossman, M. G., 1973. Proc. Natl. Acad. Sci. U.S. 70, 3052–3054.

  80. 80.

    Adams, M. J., Buchner, M., Chandrasekhar, K., Ford, G. C., Hackert, M. L., Liljas, A. Rossman, M. G., Smiley, I. E., Allison, W. S., Everse, J., Kaplan, N. O. and Taylor, S. S., 1973. Proc. Natl. Acad. Sci. U.S. 70, 1968–1972.

  81. 81.

    Borders, C. L., Jr., and Riordan, J. F., 1975. Biochemistry 14, 4698–4704.

  82. 82.

    Borders, C. L., Jr., Cipollo, K. L., Jorkasky, J. F. and Neet, K. E., 1978. Biochemsitry 17, 2654–2658.

  83. 83.

    Hjelmgsen, T., Strid, L., and Arvidsson, L., 1976. FEBS Lett. 68, 137–140.

  84. 84.

    Rodgers, K. and Weber, B. H., 1977. Arch. Biochem. Biophys. 180, 19–25.

  85. 85.

    Philips, M., Roustan, C., Fattoum, A. and Pradel, L. A., 1978. Biochim. Biophys. Acta 523, 368–376.

  86. 86.

    Berghaeuser, J., 1977. Hoppe-Seyler's Z. Physiol. Chem. 358, 1565–1572.

  87. 87.

    Berghaeuser, J., 1975. Biochem. Biophys. Acta 397, 370–376.

  88. 88.

    Powers, S. G. and Riordan, J. F., 1975. Proc. Natl. Acad. Sci. U.S. 72, 2616–2620.

  89. 89.

    Cipollo, K. L. and Dunlap, R. B., 1978. Biochem. Biophys. Res. Commun. 81, 1139–1144.

  90. 90.

    Kim, J. P. and Mehler, A. H., 1978. Fed. Proc. 37, 2537.

  91. 91.

    Marcus, F., Schuster, S. M. and Lardy, H. A., 1976. J. Biol. Chem. 254, 1775–1780.

  92. 92.

    DePont, J. J. H. H. M., Schoot, B. M., Van Prooijen-Van Eeden, A. and Bonting, S. L., 1977. Biochim. Biophys. Acta 482, 213–227.

  93. 93.

    Frigeri, L., Galante, Y. M., and Hatefi, Y., 1978. J. Biol. Chem. 253, 8935–8940.

  94. 94.

    Salvo, R. A., Serio, G. F., Evans, J. E. and Kimball, A. P., 1976. Biochemistry 15, 493–497.

  95. 95.

    Armstrong, V. W., Sternbach, H. and Eckstein, F., 1976. FEBS Lett. 70, 48–50.

  96. 96.

    Borders, C. L., Jr., Riordan, J. F. and Auld, D. S., 1975. Biochem. Biophys. Res. Commun. 66, 490–495.

  97. 97.

    Hill, J. A., Davies, R. J. H. and Elmore, D. J., 1975. Biochem. Soc. Trans. 3, 1262–1263.

  98. 98.

    Jordan, F. and Wu, A., 1978. Arch. Biochem. Biophys. 190, 699–704.

  99. 99.

    Cooperman, B. S. and Chiu, N. Y., 1973. Biochemistry 12, 1676–1682.

  100. 100.

    Daemen, F. J. M. and Riordan, J. F., 1974. Biochemistry 13, 2865–2871.

  101. 101.

    Woodroofe, M. N. and Butterworth, P. J., 1978. Biochem. Soc. Trans. 6, 562–564.

  102. 102.

    McTigue, J. J. and Van Etten, R. L., 1978. Biochim. Biophys. Acta 523, 422–429.

  103. 103.

    Borders, C. L., Jr. and Wilson, B. A., 1976. Biochem. Biophys. Res. Commun. 73, 978–984.

  104. 104.

    Fothergill, L. A., 1977. Biochem. Soc. Trans. 5, 774–776.

  105. 105.

    Sasaki, R., Utsumi, S. and Chiba, H., 1977. J. Biochem. 82, 1173–1175.

  106. 106.

    Borders, C. L., Jr., Woodall, M. L. and George, A. L., Jr., 1978. Biochem. Biophys. Res. Commun. 82, 901–906.

  107. 107.

    Lobb, R. R., Stokes, A. M., Hill, H. A. O. and Riordan, J. F., 1975. FEBS Lett. 54, 70–72.

  108. 108.

    Lobb, R. R., Stokes, A. M., Hill, H. A. O. and Riordan, J. F., 1976. Eur. J. Biochem. 70, 517–522.

  109. 109.

    Kantrowitz, E. R. and Lipscomb, W. N., 1976. J. Biol. Chem. 251, 2688–2695.

  110. 110.

    Kantrowitz, E. R. and Lipscomb, W. N., 1977. J. Biol. Chem. 252, 2873–2880.

  111. 111.

    Kalousek, F. and Rosenberg, L. E., 1978. Fed. Proc. 37, 236.

  112. 112.

    Aurebekk, B. and Little, C., 1977. Int. J. Biochem. 8, 757–762.

  113. 113.

    Enoch, H. G. and Strittmatter, P., 1978. Biochemistry 17, 4927–4932.

  114. 114.

    Barnard, G. F., Parker, T. S. and Popjak, 1978. Fed. Proc. 37, 1324.

  115. 115.

    Kameshita, I., Tokushiga, M. and Katsuki, H., 1978. J. Biochem. 84, 795–803.

  116. 116.

    Chollet, R., 1978. Biochem. Biophys. Res. Commun. 83, 1267–1274.

  117. 117.

    Schloss, J. V., Norton, I. L., Stringer, C. D. and Hartman, F. C., 1978. Fed. Proc. 37, 233.

  118. 118.

    Wolf, B. and Kalousek, F., 1978. Fed. Proc. 37, 234.

  119. 119.

    Tunnicliff, G. and Ngo, T. T., 1978. Experimentia 34, 989–990.

  120. 120.

    Busby, T. F. and Gan, J. C., 1976. Arch. Biochem. Biophys. 177, 552–560.

  121. 121.

    Freedman, M. H., Grossberg, A. L. and Pressman, D., 1968. J. Biol. Chem. 243, 6186–6195.

  122. 122.

    Gambhir, K. K. and McMenamy, R. H., 1973. J. Biol. Chem. 248, 1956–1960.

  123. 123.

    Roosdorp, N., Wann, B. and Sjöholm, I., 1977. J. Biol. Chem. 252, 3876–3880.

  124. 124.

    Rosenblatt, M., Shepard, G. L., Tyler, G. A. and Potts, J. T., Jr., 1978. Biochemistry 17, 3188–3191.

  125. 125.

    Sairam, M. R., 1976. Arch. Biochem. Biophys. 176, 197–205.

  126. 126.

    Margoliash, E., Ferguson-Miller, S., Tulloss, J., Kang, C. H., Feinberg, B. A., Brantigan, D. L. and Morrison, M., 1973. Proc. Natl. Acad. Sci. U.S. 70, 3245–3249.

  127. 127.

    Johnson, P. and Blazyk, J. M., 1978. Biochem. Biophys. Res. Commun. 82, 1013–1018.

  128. 128.

    Hardingham, T. E., Ewins, R. J. F., and Muir, H., 1976. Biochem. J. 157, 127–143.

  129. 129.

    Gosselin-Rey, C., Bernard, N. and Gerday, C., 1973. Biochim. Biophys. Acta 303, 90–104.

  130. 130.

    Schmid, R., Jagendorf, A. J. and Hulkower, S., 1977. Biochim. Biophys. Acta 462, 177–186.

  131. 131.

    Vallejos, R. H., Viale, A. and Andreo, C. S., 1977. FEBS Lett. 84, 304–308.

  132. 132.

    Rogers, T. B., Boerresen, T. and Feeney, R. E., 1978. Biochemistry 17, 1105–1109.

  133. 133.

    Rohrbach, M. S. and Bodley, J. W., 1977. Biochemistry 16, 1360–1363.

  134. 134.

    Stein, S. M. and Berestecky, J. M., 1974. Cancer Res. 34, 3112–3116.

  135. 135.

    King, J. L. and Jukes, T. H., 1969. Science, 164, 788–797.

  136. 136.

    Reeck, G., 1976. In Handbook of Biochemistry and Molecular Biology (G. D. Fasman, Ed.) 3rd Ed. vol. III, pp. 504–519, CRC Press, Cleveland.

  137. 137.

    Jukes, T. H., 1973. Biochem. Biophys. Res. Commun. 53, 709–714.

  138. 138.

    Cited in ref. 140.

  139. 139.

    Wallis, M., 1974. Biochem. Biophys. Res. Commun. 56, 711–716.

  140. 140.

    Jukes, T. H., 1974. Biochem. Biophys. Res. Commun. 58, 80–84.

  141. 141.

    Dice, J. F. and Goldberg, A. L., 1975. Proc. Natl. Acad. Sci. U.S. 72, 3893–3897.

  142. 142.

    Subak-Sharpe, H., Bark, R. R., Crawford, L. V., Morrison, J. M., Hay, J. and Kier, H. M., 1966. Cold Spring Harbor Symp. Quant. Biol. 31, 737.

  143. 143.

    Contreras, R., Ysebaert, M., Min Jon, W. and Fiers, W., 1973. Nature New Biology 241, 99.

  144. 144.

    Cotton, F. A., laCour, T., Hazen, E. E., Jr., and Legg, M. J., 1977. Biochim. Biophys. Acta 481, 1–5.

  145. 145.

    Laki, K., Seel, M. and Ladik, J., 1977. J. Theor. Biol. 67, 489–498.

  146. 146.

    Darnell, D. W. and Klotz, I. M., 1976. In Handbook of Biochemistry and Molecular Biology (Fasman, G. D., Ed.) 3rd Ed. vol. II, pp. 325–371, CRC Press, Cleveland.

Download references

Author information

Additional information

This work was supported by Grant-in-Aid GM-15003 from the National Institutes of Health.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Riordan, J.F. Arginyl residues and anion binding sites in proteins. Mol Cell Biochem 26, 71–92 (1979). https://doi.org/10.1007/BF00232886

Download citation

Keywords

  • Arginine
  • Cyclohexanedione
  • Butanedione
  • Guanidinium
  • Chemical Reactivity