Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Immunocytochemical and autoradiographic localization of GABA system in the vertebrate retina

  • 14 Accesses

  • 50 Citations

Summary

The localization of γ-aminobutyric acid (GABA) neurons in the goldfish and the rabbit retina has been studied by immunocytochemical localization of the GABA-synthesizing enzyme L-glutamate decarboxylase (GAD, L-glutamate 1-carboxy-lase, EC 4.1.1.15) and by [3H] GABA uptake autoradiography. In the goldfish retina, GAD is localized in some horizontal cells (H1 type), a few amacrine cells and sublamina b of the inner plexiform layer. Results from immunocytochemical studies of GAD-containing neurons and autoradiographic studies of GABA uptake reveals a marked similarity in the labeling pattern suggesting that in goldfish retina, the neurons which possess a high-affinity system for GABA uptake also contain significant levels of GAD. In the rabbit retina, when Triton X-100 was included in immunocytochemical incubations with a modified protein A-peroxidase-antiperoxidase method, reaction product was found in four broad, evenly spaced laminae within the inner plexiform layer. In the absence of the detergent, these laminae were seen to be composed of small, punctate deposits. When colchicine was injected intravitreally before glutamate decarboxylase staining, cell bodies with the characteristic shape and location of amacrine cells were found to be immunochemically labeled. Electron microscopic examination showed that these processes were presynaptic to ganglion cell dendrites (infrequently), amacrine cell telodendrons, and bipolar cell terminals. Often, bipolar cell terminals were found which were densely innervated by several GAD-positive processes. No definite synapses were observed in which a GAD-positive process represented the postsynaptic element. In autoradiographic studies by intravitreal injection of [3H] GABA a diffuse labeling of the inner plexiform layer and a dense labeling of certain amacrine cell bodies in the inner nuclear layer was observed. Both immunocytochemical and autoradiographic results support the notion that certain, if not all, amacrine cells use GABA as their neurotransmitter.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Awapara, J., 1950. Federation Proc. 9: 148.

  2. 2.

    Roberts, E. & Frankel, S., 1950. Federation Proc. 9: 219.

  3. 3.

    Davidson, M., 1976. Neurotransmitter Amino Acids. New York: Academic Press, pp. 57.

  4. 4.

    Krnjevic, K., 1974. Physiol. Rev. 54: 418–540.

  5. 5.

    Bonting, S. L., 1976. Transmitter in the Visual Process (ed.). New York: Pergamon Press.

  6. 6.

    Graham, Jr., L. T., 1974. The Eye (Davson, H. & Graham, L. T., Jr., eds.). New York: Academic Press, pp. 283–342.

  7. 7.

    Neal, M. J., 1976. Gen. Pharmac. 7: 321–332.

  8. 8.

    Kuriyama, K., Sisken, B., Haber, B. & Roberts, E., 1968. Brain Res. 9: 165–168.

  9. 9.

    Graham, L. T., Jr., 1972. Brain Res. 36: 476–479.

  10. 10.

    Lam, D. M. K., 1975. Cold Spring Harb. Symp. Quant. Biol. 40: 571–579.

  11. 11.

    Brandon, C., Lam, D. M. K. & Wu, J.-Y., 1979. Proc. Nat. Acad. Sci. USA 76: 3557–3561.

  12. 12.

    Lam, D. M. K., Su, Y. Y. T., Swain, L., Marc, R. E., Brandon, C. & Wu, J.-Y., 1979. Nature (London) 278: 565–567.

  13. 13.

    Bruun, A. & Ehinger, B., 1974. Exptl. Eye Res. 19: 435–447.

  14. 14.

    Ehinger, B., 1970. Exper. 26: 1063–1064.

  15. 15.

    Ehinger, B. & Falck, B., 1971. Brain Res. 33: 157–172.

  16. 16.

    Wu, J.-Y., Matsuda, T. & Roberts, E., 1973. J. Biol. Chem. 248: 3029–3034.

  17. 17.

    Wu, J.-Y., 1976. GABA in Nervous System Function (Roberts, E., Chase, T. & Tower, D., eds.). New York, Raven Press: pp. 7–55.

  18. 18.

    So, Y. Y. T., Wu, J.-Y. & Lam, D. M. K., 1979. J. Neurochem. 33: 169–179.

  19. 19.

    Wu, J.-Y., Su, Y. Y. T., Lam, D. M. K., Brandon, C. & Denner, L., 1980. Brain Res. Bull. 5 (2): 63–70.

  20. 20.

    Wu, J.-Y., 1978. Physiol. Rev. 58 (4), 863–904.

  21. 21.

    Saito, K., Barber, R., Wu, J.-Y., Matsuda, T., Roberts, E. & Vaughn, J. E., 1974. Proc. Nat. Acad. Sci. USA 71: 269–273.

  22. 22.

    McLaughlin, B. J., Wood, J. G., Saito, K., Barber, R., Vaugh, J. E., Roberts, E. & Wu, J.-Y., 1974. Brain Res. 76: 377–391.

  23. 23.

    McLaughlin, B. J., Wood, J. G., Saito, K., Roberts, E. & Wu, J.-Y., 1975. Brain Res. 85: 355–371.

  24. 24.

    McLaughlin, B. J., Barber, R., Saito, K., Roberts, E. & Wu, J.-Y., 1975. J. Comp. Neur. 164: 305–322.

  25. 25.

    Gottesfeld, Z. Brandon, C., Jacobowitz, D. M. & Wu, J.-Y., 1980. Brain Res. Bull. 5 (2): 1–6.

  26. 26.

    Brandon, C., Su, Y. Y. T., Lam, D. M. K. & Wu, J.-Y., 1980. Brain Res. Bull. 5(2): 21–29.

  27. 27.

    Baxter, C. F., 1970. Handbook of Neurochemistry, (Lajtha, A., ed.) New York: Plenum Press, vol. 3: pp. 289–353.

  28. 28.

    Kuriyama, K., Haber, B., Sisken, T. & Roberts, E., 1966. Proc. Nat. Acad. Sci. USA 55: 846–849.

  29. 29.

    Kravitz, E. A. & Potter, D. D., 1965. J. Neurochem. 12: 323–328.

  30. 30.

    Fonnum, F., 1975. Metabolic Compartmentation and Neurotransmission (Berl, S., Clarke, D. D. & Schneider, D., eds.). New York: Plenum, pp. 99–122.

  31. 31.

    Saito, K., Wu, J.-Y. & Roberts, E., 1974. Brain Res. 65: 277–285.

  32. 32.

    Wong, E., Schousboe, A., Saito, K., Wu, J.-Y. & Roberts, E., 1974. Brain Res. 68: 133–142.

  33. 33.

    Su, Y. Y. T., Wu, J.-Y. & Lam, D. M. K., 1979. Sec. for Neuroscience, abstract, vol. 5: 599.

  34. 34.

    Petrali, J. P., Hinton, D. M., Moriaty, G. C. & Sternberger, L. A., 1974. J. Histochem. Cytochem. 22: 782–801.

  35. 35.

    Lam, D. M. K. & Steinman, L., 1971. Proc. Nat. Acad. Sci. USA. 68: 2777–2781.

  36. 36.

    Voaden, M. J., Marshall, J. & Murani, N., 1974. Brain Res. 67: 115–132.

  37. 37.

    Marc, R. E., Stell, W. K., Bok, D. & Lam, D. M. K., 1978. J. Comp. Neurol. 182: 221–246.

  38. 38.

    Stell, W. K. & Lightfoot, D. O., 1975. J. Comp. Neurol. 159: 473–502.

  39. 39.

    Grzanna, R., Moliver, M. E. & Coyle, J. T., 1978. Proc. Nat. Acad. Sci. USA 75: 2502–2506.

  40. 40.

    Famiglietti, E. V., Kaneko, A. & Tachibana, M., 1977. Science 198: 1267–1269.

  41. 41.

    Stell, W. K., Ishida, A. T. & Lightfoot, D. O., 1977. Science 198: 1269–1271.

  42. 42.

    Lam, D. M. K., Marc, R. E., Sarthy, P. V., Chin, C. A., Su, Y. Y. T., Brandon, C. & Wu, J.-Y., 1980. Neurochemistry 1: 183–190.

  43. 43.

    Lam, D. M. K., 1975. Nature 254: 345–347.

  44. 44.

    Lam, D. M. K., Lasater, E. M. & Naka, K., 1978. Proc. Nat. Acad. Sci. USA 75: 6310–6313.

  45. 45.

    Caldwell, J. H. & Daw, N. W., 1978. J. Physiology 276: 257–276.

  46. 46.

    Caldwell, J. H. & Daw, N. W., 1978. J. Physiology 276: 299–310.

  47. 47.

    Caldwell, J. H. & Daw, N. W., 1978. J. Physiology 276: 277–298.

  48. 48.

    Barlow, H. B., Hill, R. W. & Levick, W. R. 1964. J. Physiol. (London) 173: 377–407.

  49. 49.

    Miller, R. F., 1979. The Neurosciences, 4th Study Program, (Schmitt, F. O. & Worden, F. G., eds.) MIT Press, pp. 227–245.

  50. 50.

    Masland, R. H., 1977. J. Comp. Neurol. 175: 275–285.

  51. 51.

    Ames, A., III & Pollen, D. A., 1969. J. Neurophysiol. 32: 424–442.

  52. 52.

    Parks, J. M., Ames, A., III & Nesbett, F. B., 1977. J. Neurochem. 27: 987–997.

  53. 53.

    Masland, R. H. & Ames, A., III, 1975. J. Neurobiol. 6: 305–312.

  54. 54.

    Dubin, M. W., 1970. J. Comp. Neurol. 140: 479–506.

  55. 55.

    Neal, M. J. & Iversen, L. L., 1972. Nature (London) New Biol. 235: 217–218.

  56. 56.

    Marshall, J. & Voaden, M. J., 1974. Exp. Eye Res. 18: 367–370.

  57. 57:

    Marshall, J. & Voaden, M. J., 1975. J. Neurochem. 15: 459–461.

  58. 58.

    Marshall, J. & Voaden, M. J., 1974. Invest. Ophthalmol. 13: 602–607.

  59. 59.

    Ehinger, B., 1966. Z. Zellforsch. Mikrosk. Anat. 71: 146–152.

  60. 60.

    Nichols, C. W. & Koelle, G. B., 1968. J. Comp. Neurol. 133: 1–16.

  61. 61.

    Ribak, C. E., Vaughn, J. E. & Roberts, E., 1978. Brain Res. 140: 315–332.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wu, J., Brandon, C., Thomas Su, Y.Y. et al. Immunocytochemical and autoradiographic localization of GABA system in the vertebrate retina. Mol Cell Biochem 39, 229–238 (1981). https://doi.org/10.1007/BF00232576

Download citation

Keywords

  • Retina
  • Amacrine Cell
  • Plexiform Layer
  • Autoradiographic Study
  • Glutamate Decarboxylase