Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Structure and function of amiloride-sensitive Na+ channels

Summary

A new molecular biological epoch in amiloride-sensitive Na+ channel physiology has begun. With the application of these new techniques, undoubtedly a plethora of new information and new questions will be forthcoming. First and foremost, however, is the question of how many discrete amiloride-sensitive Na+ channels exist. This question is important not only for elucidating structure-function relationships, but also for developing strategies for pharmacological or, ultimately, genetic intervention in such diseases as obstructive nephropathy, Liddle's syndrome, or salt-sensitive hypertension where amiloride-sensitive Na+ channel dysfunction has been implicated [17, 62].

Epithelia Na+ channels purified from kidney are multimeric. However, it is not yet clear which subunits are regulatory and which participate directly as a part of the Na+ conducting core and what is the nature of the gate. The combination of electrophysiologic techniques such as patch clamp and the ability to study reconstituted channels in planar lipid bilayers along with molecular biology techniques to potentially manipulate the individual subunits should provide the answers to questions that have puzzled physiologists for decades. It seems clear that the robust versatility of the channel in responding to a wide range of differing and potentially synergistic regulatory inputs must be a function of its multimeric structure and relation to the cytoskeleton. Multiple mechanisms of regulation imply multiple regulatory sites. This hypothesis has been validated by the demonstration that enzymatic carboxyl methylation and phosphorylation have both individual and synergistic effects on the purified channel in planar lipid bilayers.

Of the multiple mechanisms proposed for channel regulation, evidence is now available to support the ideas that channels may be activated (or inactivated) by direct modifications including phosphorylation and carboxyl methylation, by activation or association of regulatory proteins such as G proteins, and by recruitment from subapical membrane domains. The observation that channel gating is achieved primarily through regulation of open probability without alterations in conductance may simplify future understanding of the molecular events involved in gating once the regulatory sites have been identified. As more Na+ channels or Na+ channel subunits are cloned from different epithelia, it will become possible to piece together the puzzle of epithelial Na+ channels. It is interesting to observe that renal Na+ channel proteins contain a subunit which falls into the 70 kD range. This size protein is in the range reported for the aldosterone-induced proteins [12, 46, 153]. Recent reports indicate that polyclonal antibodies directed against the bovine renal Na+ channel cross-react with GP70, an aldosterone-induced protein [149], especially in light of the recent cloning of an epithelial Na+ channel whose subunit sizes are 70–80 kD [24, 25]. It is tempting to speculate that this size polypeptide forms the basic building block of amiloride-sensitive Na+ channels, which can then be subsequently modified and custom-tailored in different epithelia by the addition of various other associated regulatory proteins.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Abramcheck, F.J., VanDriessche, W., Helman, S.I. 1985. Autoregulation of apical membrane Na+ permeability of tight epithelia. J. Gen. Physiol. 85:555–582

  2. 2.

    Ahmad, I., Korbmacher, C., Segal, A.S., Cheung, P., Boulpaep, E.L., Barnstable, C.J. 1992. Mouse cortical collecting duct cells show nonselective cation channel activity and express a gene related to the cGMP-gated rod photoreceptor channel. Proc. Natl. Acad. Sci. USA 89:10262–10266

  3. 3.

    Asher, C., Eren, R., Kahn, L., Yeger, O., Garty, H. 1992. Expression of the amiloride-blockage Na+ channel by RNA from control versus aldosterone-stimulated tissue. J. Biol. Chem. 267:16061–16065

  4. 4.

    Asher, C., Garty, H. 1988. Aldosterone increases the apical Na+ permeability of toad bladder by two different mechanisms. Proc. Natl. Acad. Sci. USA 85:7413–7417

  5. 5.

    Ausiello, D.A., Stow, J.L., Cantiello, H.F., Benos, D.J. 1992. Purified epithelial Na+ channel complex contains the pertussis toxin-sensitive Gαi-3 protein. J. Biol. Chem. 267:4759–4765

  6. 6.

    Awayda, M.S., Helman, S.I. 1992. Na+-transport related changes of apical membrane capacitance in the tight epithelium of frog skin. FASEB J. 6:A1239

  7. 7.

    Barbry, P., Champe, M., Chassande, O., Munemitsu, S., Champigny, G., Lingueglia, E., Maes, P., Frelin, C., Tarter, A., Ullrich, A., Lazdunski, M. 1990. Human kidney amiloride-binding protein: cDNA structure and functional expression. Proc. Natl. Acad. Sci. USA 87:7347–7351

  8. 8.

    Barbry, P., Chassande, O., Duval, C., Rousseau, B., Frelin, C., Lazdunski, M. 1989. Biochemical identification of two types of phenamil binding sites associated with amiloride-sensitive Na+ channels. Biochemistry 28:3744–3749

  9. 9.

    Barbry, P., Chassande, O., Marsault, R., Lazdunski, M., Frelin, C. 1990. [3H] phenamil binding protein of the renal epithelium sodium channel. Purification, affinity labeling, and functional reconstitution. Biochemistry 29:1039–1045

  10. 10.

    Barbry, P., Chassande, O., Vigne, P., Frelin, C., Ellory, C., Cragoe, E.J., Jr., Lazdunski, M. 1987. Purification and subunit structure of the [3H] phenamil receptor associated with the renal apical Na+ channel. Proc. Natl. Acad. Sci. USA 84:4836–4840

  11. 11.

    Barbry, P., Frelin, C., Vigne, P., Cragoe, E.J., Jr., Lazdunski, M. 1986. [3H]phenamil, a radiolabelled diuretic for the analysis of the amiloride-sensitive Na+ channels in kidney membranes. Biochem. Biophys. Res. Commun. 135:25–32

  12. 12.

    Benjamin, W.B., Singer, I. 1974. Aldosterone-induced protein in toad urinary bladder. Science 1866:269–272

  13. 13.

    Benos, D.J., Cunningham, S.A., Baker, R.R., Beason, K.B., Oh, Y., Smith, P.R. 1992. Molecular characteristics of amiloride-sensitive sodium channels. In: Reviews of Physiology, Biochemistry, and Pharmacology. Vol. 120, pp. 31–113. Springer-Verlag, New York

  14. 14.

    Benos, D.J., Saccomani, G., Brenner, B.M., Sariban-Sohraby, S. 1988. Purification and characterization of the amiloride-sensitive sodium channel from A6 cultured cells and bovine renal papilla. Proc. Natl. Acad. Sci. USA 83:8525–8529

  15. 15.

    Benos, D.J., Saccomani, G., Sariban-Sohraby, S. 1987. The epithelial sodium channel: subunit number and location of amiloride binding site. J. Biol. Chem. 262:10613–10618

  16. 16.

    Blazer-Yost, B., Recio-Pinto, E. 1994. Structural and functional analysis of immunopurified toad urinary bladder Na+ channels. FASEB J. 8:A292 (Abstr.)

  17. 17.

    Butero-Veley, M., Curtis, J., Warnock, D.G. 1994. Liddle's syndrome revisited: a disorder of sodium reabsorption in the distal tubule. New Engl. J. Med. 330:178–181

  18. 18.

    Branco, L.G., Varanda, W.A. 1992. Toad bladder amiloride-sensitive channels reconstituted into planar lipid bilayers. J. Membrane Biol. 17:121–128

  19. 19.

    Bridges, R.J., Cragoe, E.J., Frizzell, R.A., Benos, D.J. 1989. Inhibition of colonic Na+ transport by amiloride analogs. Am. J. Physiol. 256:C667-C675

  20. 20.

    Bridges, R.J., Rummel, W., Wollenberg, P. 1984. Effects of vasopressin on electrolyte transport across isolated colon from normal and dexamethasone-treated rats. J. Physiol. 355:11–23

  21. 21.

    Brown, D., Sorscher, E.J., Ausiello, D.A., Benos, D.J. 1989. Immunocytochemical localization of sodium channels in rat kidney medulla. Am. J. Physiol. 256:F366-F369

  22. 22.

    Bubien, J.K., Warnock, D.G. 1993. Amiloride-sensitive sodium conductance in human B lymphoid cells. Am. J. Physiol. 265:C1175-C1183

  23. 23.

    Busath, D., Szabo, G. 1988. Low conductance gramicidin A channels are head-to-head dimers of β6.3-helices. Biophys. J. 53:689–695

  24. 24.

    Canessa, C.M., Horisberger, J.-D., Rossier, B.C. 1993. Epithelial sodium channel related to proteins involved in neurodegeneration. Nature 361:467–470

  25. 25.

    Canessa, C.M., Schild, L., Buell, G., Thoreus, B., Gantschi, I., Horisberger, J.-D., Rossier, B.C. 1994. Amiloride-sensitive epithelial Na+ channel is made of three homologous subunits. Nature 367:463–467

  26. 26.

    Cantiello, H.F., Patenaude, C.R., Ausiello, D.A. 1989. G protein subunit, αi-3, activates a pertussis toxin-sensitive Na+ channel from the epithelial cell line, A6. J. Biol. Chem. 264:20867–20870

  27. 27.

    Cantiello, H.F., Patenaude, C.R., Codina, J., Birnbaumer, L., Ausiello, D.A. 1990. Gαi-3 regulates epithelial Na+ channels by activation of phospholipase A2 and lipoxygenase pathways. J. Biol. Chem. 265:21624–21628

  28. 28.

    Catterall, W.A. 1988. Structure and function of voltage-sensitive ion channels. Science 245:50–61

  29. 29.

    Chalfant, M.L., Coupaye-Gerard, B., Kleyman, T.R. 1993. Distinct regulation of Na+ reabsorption and Cl secretion by arginine vasopressin in the amphibian cell line A6. Am. J. Physiol. 264:C1480-C1486

  30. 30.

    Chandy, K.G., Williams, C.B., Spencer, R.H., Aguilar, B.A., Ghanshani, S., Tempel, B.L., Gutman, G.A. 1990. A family of three mouse potassium channel genes with intronless coding regions. Science 247:973–975

  31. 31.

    Cherksey, B.D. 1988. Functional reconstitution of an isolated sodium channel from bovine trachea. Comp. Biochem. Physiol. 90A:771–773

  32. 32.

    Chinet, T.C., Fullton, J.M., Yankaskas, J.R., Boucher, R.C., Stutts, M.J. 1993. Sodium-permeable channels in the apical membrane of human nasal epithelial cells. Am. J. Physiol. 265:1050–1060

  33. 33.

    Clark, S. 1992. Protein isoprenylation and methylation at carboxyl-terminal cysteine residues. Annu. Rev. Biochem. 61:355–386

  34. 34.

    Cox, M. 1991. Relationship of the aldosterone-induced protein GP70 to the renal epithelial conductive Na+ channel. In: Aldosterone: Functional Aspects. J.P. Bonvalet, N. Framan, M.E. Refestin-Oblin, editors. Collogue INSERM. Vol. 215, pp. 249–257. Libbey Eurotext, Paris

  35. 35.

    Driscoll, M., Chalfie, M. 1991. The mec-4 gene is a member of a family of Caenorhabditis elegans genes that can mutate to induce neuronal degeneration. Nature 349:588–593

  36. 36.

    Duchatelle, P., O'Hara, A., Ling, B.N., Kemendy, A.E., Eaton, D.C. 1992. Regulation of renal epithelial sodium channels. 1992. Mol. Cell. Biochem. 114:27–34

  37. 37.

    Eaton, D.C., Marunaka, Y., Ling, B.N. 1992. Ion channels in epithelial tissue: single channel properties. In: Membrane Transport in Biology. J.A. Schafer, H.H. Ussing, P. Kristensen and G.H. Giebisch, editors. Vol. 5, pp. 73–165. Springer-Verlag, Berlin

  38. 38.

    Els, W.J., Helman, S.I. 1991. Activation of epithelial Na+ channels by hormonal and autoregulatory mechanisms of action. J. Gen. Physiol. 98:1197–1120

  39. 39.

    Farquhar, M.G., Palade, G.E. 1966. Adenosine triphosphatase localization in amphibian epidermis. J. Cell Biol. 30:359–379

  40. 40.

    Frings, S., Purves, R.D., MacKnight, A.D.C. 1988. Single channel recordings from the apical membrane of the toad urinary bladder epithelial cell. J. Membrane Biol. 106:157–172

  41. 41.

    Garty, H. 1986. Mechanisms of aldosterone action in tight epithelia. J. Membrane Biol. 90:193–205

  42. 42.

    Garty, H. 1994. Molecular properties of epithelial, amiloride-blockable Na+ channels. FASEB J. 8:522–528

  43. 43.

    Garty, H., Benos, D.J. 1988. Characteristics and regulatory mechanisms of the amiloride-blockable Na+ channel. Physiol. Rev. 68:309–373

  44. 44.

    Garty, H., Edelman, I.S. 1983. Amiloride-sensitive trypsinization of apical sodium channels. J. Gen. Physiol. 81:785–803

  45. 45.

    Garvin, J.L., Simon, S.A., Cragoe, E.J., Jr., Mandel, L.J. 1986. Binding of [3H]-phenamil, an irreversible amiloride analog, to toad urinary bladder: Effects of aldosterone and vasopressin. J. Membrane Biol. 90:107–113

  46. 46.

    Geheb, M., Alvis, R., Hercker, E., Cox, M. 1983. Mineralcorticoid-specificity of aldosterone-induced protein synthesis in giant-toad (Bufo marinus) urinary bladders. Biochem. J. 214:29–35

  47. 47.

    George, A.L., Jr., Staub, O., Geering, K., Rossier, B.C., Kleyman, T.R., Kraehenbuhl, J.-P. 1989. Functional expression of the amiloride-sensitive sodium channel in Xenopus oocytes. Proc. Natl. Acad. Sci. USA 86:7295–7298

  48. 48.

    Gogelein, H., Greger, R. 1986. Na+ selective channels in the apical membrane of rabbit late proximal tubules (pars recta). Pfluegers Arch. 406:198–203

  49. 49.

    Goldstein, O., Asher, C., Barbry, P., Cragoe, E.J., Jr., Clauss, W., Garty, H. 1994. An epithelial high-affinity amiloride-binding site, different from the Na+ channel. J. Biol. Chem. 268:7856–7862

  50. 50.

    Goodman, D.B.P., Wong, M., Rasmussen, H. 1971. Studies on the mechanism of action of aldosterone: hormone induced changed in lipid metabolism. Biochemistry 10:3825–3831

  51. 51.

    Hackney, C.M., Furness, D.N., Benos, D.J., Woodley, J.F., Bargnratt, J. 1992. Putative immunolocalization of the mechanoelectrical transduction channels in mammalian cochlear hair cells. Proc. R. Soc. Lond. B 248:215–221

  52. 52.

    Hamill, O.P., Lane, J.W., McBride, D.W. 1992. Amiloride: a molecular probe for mechanosensitive channels. TIPS 13:373–376

  53. 53.

    Hamilton, K.L., Eaton, D.C. 1985. Single-channel recordings from amiloride-sensitive epithelial sodium channel. Am. J. Physiol. 249:C200-C207

  54. 54.

    Hamilton, K.L., Eaton, D.C. 1986. Regulation of single sodium channels in renal tissue: a role in sodium homeostasis. Fed. Proc. 45:2713–2717

  55. 55.

    Hamilton, K.L., Eaton, D.C. 1986. Single channel records from two types of amiloride-sensitive epithelial Na+ channels. Membr. Biochem. 6:149–171

  56. 56.

    Hawk, C.T., Schafer, J.A. 1992. Regulation of Na+ channels in the cortical collecting duct by AVP and mineralocorticoids. Kidney Int. 41:255–268

  57. 57.

    Hille, B. 1992. Ionic Channels in Excitable Membranes. Second edition. Sinauer Associates, Sunderland, MA

  58. 58.

    Hille, B., Leibowitz, M.D., Sutro, J.B., Schwarz, J., Holan, G. 1987. State-dependent modification of Na channels by lipidsoluble agonists. In: Proteins of Excitable Membranes. B. Hille and D.M. Fambrough, editors. SGP Series 41:109–123. Wiley, New York

  59. 59.

    Hinton, C.F., Eaton, D.C. 1989. Expression of amiloride-blockable sodium channels in Xenopus oocytes. Am. J. Physiol. 257:C825-C829

  60. 60.

    Horisberger, J.-D., Lemas, V., Kraehenbuhl, J.-P., Rossier, B.C. 1991. Structure-function relationship of Na, K-ATPase. Annu. Rev. Physiol. 53:565–584

  61. 61.

    Huang, M., Chalfie, M. 1994. Gene interactions affecting mechanosensory transduction in Caenorhabditis elegans. Nature 367:467–470

  62. 62.

    Hwang, S.-J., Harris, H.W., Jr., Otuechere, G., Yalla, S., Sullivan, M.R., Kashgarian, M., Benos, D.J., Kleyman, T.R., Zeidel, M.L. 1993. Transport defects of rabbit inner medullary collecting duct cells in obstructive nephropathy. Am. J. Physiol. 264:F808-F815

  63. 63.

    Imoto, K., Busch, C., Sakmann, B., Mishina, M., Konno, T., Nakai, J., Bujo, H., Mon, Y., Fukuda, K., Numa, S. 1988. Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance. Nature 335:645–648

  64. 64.

    Ismailov, I.I., McDuffie, J.H., Benos, D.J. 1994. Protein kinase A phosphorylation of G-protein regulation of purified renal Na+ channels in planar bilayer membranes. J. Biol. Chem. 269:10235–10241

  65. 65.

    Johnson, J.P., Jones, D., Wiesmann, W.P. 1986. Hormonal regulation of Na+-K+-ATPase in cultured epithelial cells. Am. J. Physiol. 251:C186-C190

  66. 66.

    Johnson, J.P., Rokaw, M.D., Palevsky, P.M., Cunningham, S., Benos, D.J. 1994. Transcriptional translational, and post-translational regulation of a Na+ channel associated G-protein (GP) by aldosterone (Aldo). Clin. Res. Meetings 42:319

  67. 67.

    Johnson, L.G., Dickman, K.G., Moore, K.L., Mandel, L.J., Boucher, R.C. 1993. Enhanced Na+ transport in air-liquid interface culture system. Am. J. Physiol. 264:L560-L565

  68. 68.

    Joris, L., Krouse, M.E., Hagiwara, G., Bell, C.L., Wine, J.J. 1989. Patch-clamp study of cultured human sweat duct cells: amiloride-blockable Na+ channel. Pfluegers Arch. 414:369–372

  69. 69.

    Kemendy, A.E., Kleyman, T.R., Eaton, D.C. 1992. Aldosterone alters the open probability of amiloride-blockade sodium channels in A6 epithelia. Am. J. Physiol. 263:C825-C837

  70. 70.

    Keynes, R.D. 1969. From frog skin to sheep rumen: a survey of transport of salts and water across multicellular structures. Q. Rev. Biophys. 2:177–281

  71. 71.

    Kleyman, T.R., Cragoe, E.J., Jr. 1988. Amiloride and its analogs as tools in the study of ion transport. J. Membrane Biol. 105:1–21

  72. 72.

    Kleyman, T.R., Cragoe, E.J., Jr., Kraehenbuhl, J.-P. 1989. The cellular pool of Na+ channels in amphibian cell line A6 is not altered by mineralocorticoids. J. Biol. Chem. 264:11995–12000

  73. 73.

    Kleyman, T.R., Cragoe, E.J., Jr., Kraehenbuhl, J.-P. 1991. Characterization and cellular localization of the epithelial Na+ channel. Studies using an anti-Na+ channel antibody raised by an anti-idiotypic route. J. Biol. Chem. 266:3907–3915

  74. 74.

    Kleyman, T.R., Ernst, S.A., Coupaye-Gerard, B. 1994. Arginine vasopressin and forskolin regulate apical cell surface expression of epithelial Na+ channels in A6 cells. Am. J. Physiol. 266:F506-F511

  75. 75.

    Kleyman, T.R., Ragagopalan, R., Cragoe, E.J., Jr., Erlanger, B.F., Al-Awqati, Q. 1986. New amiloride analogue as hapten to raise anti-amiloride antibodies. Am. J. Physiol. 250:C165-C170

  76. 76.

    Kleyman, T.R., Yulo, T., Ashbaugh, C., Landry, D., Cragoe, E.J., Jr., Al-Awqati, Q. 1986. Photoaffinity labeling of the epithelial sodium channel. J. Biol. Chem. 261:2839–2843

  77. 77.

    Koeppen, B.M., Stanton, B.A. 1992. Sodium chloride transport. Distal nephron. In: The Kidney: Physiology and Pathophysiology. D.W. Seldin and G. Giebisch, editors. pp. 2003–2039. Raven, New York

  78. 78.

    Kroll, B., Bautsch, W., Bremer, S., Wilke, M., Tummler, B., Fromter, E. 1989. Selective expression of an amiloride-inhibitable Na+ conductance from mRNA of respiratory epithelium in Xenopus laevis oocytes. Am. J. Physiol. 257:L284-L288

  79. 79.

    Kupitz, Y., Atlas, D. 1993. A putative ATP-activated Na+ channel involved in sperm-induced fertilization. Science 261:484–486

  80. 80.

    Landry, D., Ullivan, S., Nicolaides, M., Redhead, C., Edelman, A., Field, M., Al-Awqati, Q., Edwards, J. 1993. Molecular cloning and characterization of p64, a chloride channel protein from kidney microsomes. J. Biol. Chem. 268:14948–14955

  81. 81.

    Lane, J.W., McBride, D.W., Hamill, O.P. 1992. Structure-activity amiloride and its analogs in blocking the mechanosensitive channel in Xenopus oocytes. J. Pharmacol. 106:283–286

  82. 82.

    Lazorick, K., Miller, C., Sariban-Sohraby, S., Benos, D.J. 1985. Synthesis and characterization of methylbromoamiloride, a potential biochemical probe of epithelial Na+ channels. J. Membrane Biol. 86:69–77

  83. 83.

    Lewis, S.A., Alles, W.P. 1986. Urinary kallikreim: a physiological regulator of epithelial Na+ absorption. Proc. Natl. Acad. Sci. USA 83:5345–5348

  84. 84.

    Lewis, S.A., DeMoura, J.L.C. 1982. Incorporation of cytoplasmic vesicles into apical membrane of mammalian urinary bladder epithelium. Nature 297:685–688

  85. 85.

    Li, X.-J., Blackshaw, S., Snyder, S.H. 1994. Expression and localization of amiloride-sensitive sodium channel indicate a role for non-taste cells in taste perception. Proc. Natl. Acad. Sci. USA 91:1814–1818

  86. 86.

    Light, D.B., Ausiello, D.A., Stanton, B.A. 1989. Guanine nucleotide-binding protein, αi-3, directly activates a cation channel in rat inner medullary collecting duct cells. J. Clin. Invest. 84:352–356

  87. 87.

    Light, D.B., Corbin, J.D., Stanton, B.A. 1990. Dual ion-channel regulation by cyclic GMP and cyclic GMP-dependent protein kinase. Nature 344:336–339

  88. 88.

    Light, D.B., McCann, F.V., Keller, T.M., Stanton, B.A. 1988. Amiloride-sensitive cation channel in apical membrane of inner medullary collecting duct. Am. J. Physiol. 255:F278-F286

  89. 89.

    Light, D.B., Schwiebert, E.M., Karlson, K.H., Stanton, B.A. 1989. Atrial naturetic peptide inhibits a cation channel in renal inner medullary collecting duct cells. Science 243:383–385

  90. 90.

    Ling, B.N., Hinton, C.F., Eaton, D.C. 1991. Amiloride-sensitive sodium channels in rabbit cortical collecting tubule primary cultures. Am. J. Physiol. 261:F933-F944

  91. 91.

    Ling, B.N., Eaton, D.C. 1989. Effects of luminal Na+ on single Na+ channels in A6 cells, a regulatory role for protein kinase C. Am. J. Physiol. 256:F1094-F1103

  92. 92.

    Ling, B.N., Kemendy, A.E., Kokko, K.E., Hinton, C.F., Marunaka, Y., Eaton, D.C. 1990. Regulation of the amiloride-blockable sodium channel from epithelial tissue. Mol. Cell Biochem. 99:141–150

  93. 93.

    Lingueglia, E., Voilley, N., Waldmann, R., Lazdunski, M., Barbry, P. 1993. Expression cloning of an epithelial amiloride-sensitive Na+ channel. A new channel type with homologies to Caenorhabditis elegans degenerins. FEBS Lett. 318:95–99

  94. 94.

    Marunaka, Y., Eaton, D.C. 1991. Effects of vasopressin and cAMP on single amiloride-blockable Na+ channels. Am. J. Physiol. 258:C352-C368

  95. 95.

    Matsumoto, P.S., Ohara, A., Cuchatelle, P., Eaton, D.C. 1993. Tyrosine kinase regulates epithelial sodium transport in A6 cells. Am. J. Physiol. 264:C246-C250

  96. 96.

    Matalon, S. 1991. Mechanisms and regulation of ion transport in adult mammalian alveolar type II pneumocytes. Am. J. Physiol. 261:C727-C738

  97. 97.

    Matalon, S., Bauer, M.L., Benos, D.J., Kleyman, T.R., Lin, C., Cragoe, E.J., Jr., O'Brodovich, H. 1993. Fetal lung epithelial cells contain two populations of amiloride-sensitive Na+ channels. Am. J. Physiol. 264:L357-L364

  98. 98.

    Matalon, S., Bridges, R.J., Benos, D.J. 1991. Na+ uptake into alveolar type II membrane vesicles occurs through amiloride-inhibitable Na+ channels. Am. J. Physiol. 260:L90-L96

  99. 99.

    Matalon, S., Yue, G., Hu, P., Oh, Y., Benos, D.J. 1993. Mechanisms of active Na+ transport across freshly isolated and cultured adult alveolar type II pneumocytes. In: Fluid and Solute Transport in the Airspaces of the Lungs. R. Effros and H.K. Chang, editors. pp. 179–217. Marcel Dekker, New York

  100. 100.

    Matalon, S., Kirk, K.L., Bubien, J., Oh, Y., Hu, P., Yue, G., Shoemaker, R., Cragoe, E.J., Jr., Benos, D.J. 1992. Immunocytochemical and functional characterization of Na+ conductance in adult alveolar pneumocytes. Am. J. Physiol. 262:C1228-C1238

  101. 101.

    Matthias, M., Cantiello, H.F., Ausiello, D.A. 1987. Inhibition of epithelial Na+ transport by atriopeptin, protein kinase C and perussis toxin. Am. J. Physiol. 253:F372-F376

  102. 102.

    Mills, J.W., Ernst, S.A. 1975. Localization of sodium pump sites in frog urinary bladder. Biochim. Biophys. Acta 375:268–273

  103. 103.

    Moran, A., Asher, C., Cragoe, E.J., Jr. 1988. Conductive sodium pathway with low affinity to amiloride in LLC-PK1 cells and other epithelia. J. Biol. Chem. 263:19586–19591

  104. 104.

    Noda, M., Shimizu, S., Tanabe, T., Takai, T., Kayano, T., Ikeda, T., Takahashi, H., Hakayama, H., Kanoaka, Y., Minamino, N., Kangawa, K., Matsuo, H., Raftery, M.A., Hirose, T., Inayama, S., Hayashida, H., Miyata, T., Numa, S. 1984. Primary structure of Electrophorus electricus sodium channel deduced from cDNA sequence. Nature 121:121–127

  105. 105.

    Novotny, W.F., Chassande, O., Baker, M., Lazdunski, M., Barbry, P. 1994. Diamine oxidase is the amiloride-binding protein and is inhibited by amiloride analogues. J. Biol. Chem. 269:9921–9925

  106. 106.

    O'Brodovich, H., Canessa, C.M., Ueda, J., Rafii, B., Rossier, B.C., Edelson, J. 1993. Expression of the epithelial Na+ channel in the developing rat lung. Am. J. Physiol. 265:C491-C496

  107. 107.

    O'Hara, A., Matsunaga, H., Eaton, D.C. 1993. G-protein activation inhibits amiloride-blockable highly selective sodium channels in A6 cells. Am. J. Physiol. 264:C352-C360

  108. 108.

    Oh, Y., Benos, D.J. 1993. Rapid purification of an amiloride-sensitive Na+ channel from bovine kidney and its functional reconstitution. Protein Expr. Purif. 4:312–319

  109. 109.

    Oh, Y., Benos, D.J. 1993. Single channel characteristics of a purified bovine renal amiloride-sensitive Na+ channel in planar lipid bilayers. Am. J. Physiol. 264:C1489-C1499

  110. 110.

    Oh, Y., Matalon, S., Kleyman, T.R., Benos, D.J. 1992. Biochemical evidence for the presence of an amiloride binding protein in adult alveolar type II pneumocytes. J. Biol. Chem. 267:18498–18504

  111. 111.

    Oh, Y., Smith, P.R., Bradford, A.L., Keeton, D., Benos, D.J. 1993. Regulation by phosphorylation of purified epithelial Na+ channels in planar lipid bilayers. Am. J. Physiol. 265:C85-C91

  112. 112.

    Olans, L., Sariban-Sohraby, S., Benos, D.J. 1984. Saturation behavior of single amiloride sensitive sodium channels in planar lipid bilayers. Biophys. J. 46:831–835

  113. 113.

    Pacha, J., Frindt, G., Antonian, L., Silver, R.B., Palmer, L.G. 1993. Regulation of Na channels of the rat cortical collecting tubule by aldosterone. J. Gen. Physiol. 102:25–42

  114. 114.

    Palmer, L.G. 1992. Epithelial Na channels: function and diversity. Annu. Rev. Physiol. 54:51–66

  115. 115.

    Palmer, L.G., Corthesy-Theulaz, I., Gaeggeler, H.-P., Kraehenbuhl, J.-P., Rossier, B.C. 1990. Expression of epithelial Na+ channels in Xenopus oocytes. J. Gen. Physiol. 96:23–46

  116. 116.

    Palmer, L.G., Frindt, G. 1986. Amiloride sensitive Na+ channels from the apical membrane of the rat cortical collecting tubules. Proc. Natl. Acad. Sci. USA 83:2767–2770

  117. 117.

    Palmer, L.G., Frindt, G. 1987. Effects of cell Ca and pH on Na+ channels from rat cortical collecting tubule. Am. J. Physiol. 253:F333-F339

  118. 118.

    Palmer, L.G., Li, J.H.-Y., Lindemann, B., Edelman, I. 1982. Aldosterone control of the density of sodium channels in the toad urinary bladder. J. Membrane Biol. 64:91–102

  119. 119.

    Park, C.S., Kipnowski, J., Fanestil, D.D. 1983. Role of carboxyl group in Na+ entry step at apical membrane of toad urinary bladder. Am. J. Physiol. 245:F707-F715

  120. 120.

    Patlak, J. 1991. Molecular kinetics of voltage-dependent Na+ channels. Physiol. Rev. 71:1047–1080

  121. 121.

    Paulmichl, M., Li, Y., Wickman, K., Ackerman, M., Peralta, E., Clapham, D. 1992. New mammalian chloride channel identified by expression cloning. Nature 356:238–241

  122. 122.

    Prat, A.G., Ausiello, D.A., Cantiello, H.F. 1993. Vasopressin and protein kinase A activate G-protein sensitive epithelial Na+ channels. Am. J. Physiol. 265:C218-C223

  123. 123.

    Prat, A.G., Bertorello, A.M., Ausiello, D.A., Cantiello, H.F. 1993. Activation of epithelial Na+ channels by protein kinase A requires actin filaments. Am. J. Physiol. 265:C224-C233

  124. 124.

    Recio-Pinto, E., Thornhill, W.B., Duch, D.S., Levison, S.R., Urban, B.W. 1990. Neuraminidase treatment modifies the function of electroplax sodium channels in planar lipid bilayers. Neuron 5:675–684

  125. 125.

    Robinson, D.H., Bubien, J.K., Smith, P.R. (1989). Whole-cell currents in six and seven day post coitus rabbit trophectodermal cells. J. Cell Biol. 109:61a (Abstr.)

  126. 126.

    Robinson, D.H., Bubien, J.K., Smith, P.R., Benos, D.J. 1991. Epithelial sodium conductance in rabbit preimplantation trophectodermal cells. Dev. Biol. 147:313–321

  127. 127.

    Sariban-Sohraby, S., Abramow, M., Fisher, R.S. 1992. Singlechannel behavior of a purified epithelial Na+ channel subunit that binds amiloride. Am. J. Physiol. 263:C1111-C1117

  128. 128.

    Sariban-Sohraby, S., Benos, D.J., 1986. The amiloride-sensitive sodium channel. Am. J. Physiol. 250:C175-C190

  129. 129.

    Sariban-Sohraby, S., Burg, M.B., Turner, R.J. 1984. Aldosteronestimulated sodium uptake by apical membrane vesicles from A6 cells. J. Biol. Chem. 259:11221–11225

  130. 130.

    Sariban-Sohraby, S., Burg, M., Wiesmann, W.P., Chiang, P.K., Johnson, J.P. 1984. Methylation increases sodium transport into A6 apical membrane vesicles: possible mode of aldosterone action. Science 225:745–746

  131. 131.

    Sariban-Sohraby, S., Fisher, R.S., Abramow, M. 1993. Aldosterone-induced and GTP-stimulated methylation of a 90 kDa polypeptide in the apical membrane of A6 epithelia. J. Biol. Chem. 268:26613–26617

  132. 132.

    Sariban-Sohraby, S., Latorre, R., Burg, M., Olans, L., Benos, D.J. 1984. Amiloride-sensitive epithelial Na+ channels reconstituted in planar lipid bilayer membranes. Nature 308:80–82

  133. 133.

    Sariban-Sohraby, S., Sorscher, E.J., Brenner, B.M., Benos, D.J. 1988. Phosphorylation of a single subunit of the epithelial Na+ channel protein following vasopressin treatment of A6 cells. J. Biol. Chem. 263:13875–13879

  134. 134.

    Schafer, J.A. (1994). Salt and water homeostasis—is it just a matter of good bookkeeping? J. Am. Soc. Nephrol. (in press)

  135. 135.

    Scott, W.N., Reich, I.M., Goodman, D.B.P. 1979. Inhibition of fatty acid synthesis prevents the incorporation of aldosterone-induced proteins into membranes. J. Biol. Chem. 254:4957–4959

  136. 136.

    Seeburg, P.H. 1993. The molecular biology of mammalian glutamate receptor channels. Trends Neurosci. 16:359–365

  137. 137.

    Senyk, O., Matalon, S., Rotin, D., O'Brodovich, H., Benos, D.J. 1994. Immunopurification and reconstitution of amiloride-sensitive Na+ channels from rabbit lung into planar lipid bilayers. FASEB J. 8:A294

  138. 138.

    Silver, R.B., Frindt, G., Windhager, E.E., Palmer, L.G. 1993. Feedback regulation of Na+ channels in rat CCD. I. Effects of inhibition of the Na+ pump. Am. J. Physiol. 264:F557-F564

  139. 139.

    Simon, S.A., Holland, V.F., Benos, D.J., Zampighi, G.A. 1993. Transcellular and paracellular pathways in lingual epithelia and their influence in taste reduction. Micro. Res. Tech. 26:196–206

  140. 140.

    Smith, P.R., Benos, D.J. 1991. Epithelial Na+ channels. Annu. Rev. Physiol. 53:509–530

  141. 141.

    Smith, P.R., Saccomani, G., Joe, E.-H., Angelides, K.J., Benos, D.J. 1991. Amiloride-sensitive sodium channel is linked to the cytoskeleton in renal A6 epithelial cells. Proc. Natl. Acad. Sci. USA 88:6971–6975

  142. 142.

    Smith, J.J., Welsh, M.J. 1993. Fluid and electrolyte transport by cultured human airway epithelia. J. Clin. Invest. 91:1590–1597

  143. 143.

    Sonnenberg, H., Honrath, U., Wilson, D.R. 1987. Effects of amiloride in the medullary collecting duct of rat kidney. Kidney Int. 31:1121–1125

  144. 144.

    Sorscher, E.J., Accavitti, M.A., Keeton, D., Steadman, E., Frizzell, R.A., Benos, D.J. 1988. Antibodies against purified epithelial sodium channel protein from bovine renal papilla. Am. J. Physiol. 24:C835-C843

  145. 145.

    Stanton, B.A., Kiser, N.L., McCoy, D., Molday, R.S., Karlson, K. 1994. Molecular cloning of a cGMP-gated cation channel cDNA in IMCD. J. Am. Soc. Nephrol. 4:880 (Abstr.)

  146. 146.

    Staub, O., Verry, F., Kleyman, T.R., Benos, D.J., Rossier, B.C., Kraehenbuhl, J.-P. 1992. Primary structure of an apical protein from Xenopus laevis that participates in amiloride-sensitive sodium channel activity. J. Cell Biol. 119:1497–1506

  147. 147.

    Stirling, C.E. 1972. Radioautographic localization of sodium pump sites in rabbit intestine. J. Cell. Biol. 53:704–714

  148. 148.

    Szerlip, H., Cox, M. 1989. Aldosterone induced glycoproteins: further characterization. J. Steroid Biochem. 32:815–822

  149. 149.

    Szerlip, H., Palevsky, P., Cox, M., Blazer-Yost, B. 1991. Relationship of the aldosterone-induced protein, GP70, to the conductive Na+ channel. J. Am. Soc. Nephrol. 2:1108–1114

  150. 150.

    Thiemann, A., Grader, S., Pusch, M., Jentsch, T.J. 1992. A chloride channel widely expressed in epithelial and non-epithelial cells. Nature 356:57–60

  151. 151.

    Tousson, A., Alley, C., Sorscher, E.J., Brinkley, B., Benos, D.J. 1989. Immunocytochemical localization of amiloride-sensitive sodium channels in sodium-transporting epithelia. J. Cell Sci. 93:349–362

  152. 152.

    Trimmer, J.S., Agnew, W.S. 1989. Molecular diversity of voltage-sensitive Na channels. Annu. Rev. Physiol. 51:401–418

  153. 153.

    Truscello, A., Gaggler, H.P., Rossier, B.C. 1986. Thyroid hormone antagonizes an aldosterone-induced protein: A candidate mediator for the late mineralocorticoid response. J. Membrane Biol. 89:173–183

  154. 154.

    Tsui, L.-C., Buchwald, M. 1991. Biochemical and molecular genetics of cystic fibrosis. Adv. in Human Gen. 20:153–266

  155. 155.

    Uchida, S., Sasaki, S., Furukawa, T., Hiraoka, M., Imai, T., Hirata, Y., Marumo, F. 1993. Molecular cloning of a chloride channel that is regulated by dehydration and expressed predominantly in kidney medulla. J. Biol. Chem. 268:3821–3824

  156. 156.

    Ullrich, K.J., Papavassiliou, F. 1979. Sodium reabsorption in the papillary collecting duct of rats. Pfluegers Arch. 379:49–52

  157. 157.

    Van Renterghem, C., Lazdunski, M. 1991. A new non voltagedependent epithelial-like Na+ channel in vascular smooth muscle cells. Pfluegers Arch. 419:401–408

  158. 158.

    Verity, K., Fuller, P.J. (1994). Isolation of a rat amiloride-binding protein cDNA clone: tissue distribution and regulation of expression. Am. J. Physiol. (in press)

  159. 159.

    Verkman, A.S. 1992. Water channels in cell membranes. Annu. Rev. Physiol. 54:97–108

  160. 160.

    Verrier, B., Champigny, G., Barbry, P., Gerard, C., Mauchamp, J., Lazdunski, M. 1989. Identification and properties of a novel type of Na+-permeable amiloride-sensitive channel in thyroid cells. Eur. J. Biochem. 183:499–505

  161. 161.

    Vigne, P., Champigny, G., Marsault, R., Barbry, P., Frelin, C., Lazdunski, M. 1989. A new type of amiloride-sensitive cationic channel in endothelial cells of brain microvessels. J. Biol. Chem. 264:7663–7668

  162. 162.

    Voilley, N., Lingueglia, E., Champigny, G., Mattei, M.-G., Waldmann, R., Lazdunski, M., Barbry, P. 1994. The lung amiloride-sensitive Na+ channel: biophysical properties, pharmacology, ontogenesis, and molecular cloning. Proc. Natl. Acad. Sci. USA 91:247–251

  163. 163.

    Wang, X., Kleyman, T.R., Tohda, H., Marunaka, Y., O'Brodovich, H. 1993. 5-(N-ethyl-N-isopropyl) amiloride sensitive Na+ currents in intact fetal distal lung epithelial cells. Can. J. Physiol. Pharmacol. 71:58–62

  164. 164.

    Wedengaertner, P.B., Chu, D.H., Wilson, P.T., Levis, M.J., Bourne, H.R. 1993. Palmitoylation is required for signaling functions and membrane attachment of Gqα and Gsα. J. Biol. Chem. 268:25001–25008

  165. 165.

    Wiesmann, W.P., Johnson, J.P., Miura, G.A., Chiang, P.K. 1985. Aldosterone-stimulated transmethylations are linked to sodium transport. Am. J. Physiol. 248:F43-F47

  166. 166.

    Wills, N.K., Millinoff, L.P., Crowe, W.E. 1991. Na+ channel activity in cultured renal (A6) epithelium: Regulation by solution osmolarity. J. Membrane Biol. 121:79–90

  167. 167.

    Wills, N.K., Purcell, R.K., Clausen, C., Millinoff, L.P. 1993. Effects of aldosterone on the impedance properties of cultured renal amphibian epithelia. J. Membrane Biol. 133:17–27

  168. 168.

    Yamane, H.K., Farnsworth, C.C., Xiy, H., Howald, W., Fung, K.K.B., Clarke, S., Gelb, M.H., Glomset, J.A. 1990. Brain G protein γ subunits contain an all-trans-geranylgeranyl-cysteine methyl ester at their carboxyl termini. Proc. Natl. Acad. Sci. USA 87:5868–5872

  169. 169.

    Yanase, M., Handler, J.S. 1986. Activators of protein kinase C inhibit sodium transport in A6 epithelia. Am. J. Physiol. 250:C517-C522

  170. 170.

    Yorio, T., Bentley, P.J. 1978. Phospholipase A and the mechanisms of action of aldosterone. Nature 271:79–81

  171. 171.

    Yue, G., Hu, P., Oh, Y., Jilling, T., Shoemaker, R.L., Benos, D.J., Cragoe, E.J., Jr., Matalon, S. 1993. Culture-induced alterations in alveolar type II cell Na+ conductance. Am. J. Physiol. 265:C630-C640

  172. 172.

    Yue, G., Shoemaker, R.L., Matalon, S. 1994. Regulation of low-amiloride sensitive sodium channels in alveolar type II cells. Am. J. Physiol. 267:L94-L100

Download references

Author information

Additional information

We thank Mrs. Charlae Starr for superb editorial assistance, and to Drs. Bernard Rossier and James Schafer for their critical appraisal of the manuscript. This work was supported by National Institutes of Health (NIH) Grant DK 37206. M.S.A. is supported by N.I.H. Training Grant DK 07545.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Benos, D.J., Awayda, M.S., Ismailov, I.I. et al. Structure and function of amiloride-sensitive Na+ channels. J. Membarin Biol. 143, 1–18 (1995). https://doi.org/10.1007/BF00232519

Download citation

Key words

  • Phosphorylation
  • Planar lipid bilayers
  • Kidney
  • Membrane proteins
  • Antibodies
  • Lipidation