Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Na+ transport in Acetabularia bypasses conductance of plasmalemma

  • 29 Accesses

  • 10 Citations

Abstract

Na+-selective microelectrodes with the sensor ETH 227 have been used to measure the cytoplasmic Na+ concentration, [Na+] c , in Acetabularia. In the steady-state, [Na+] c is about 60 m m (external 460 m m). Steps in external Na+ concentration, [Na+] o , cause biexponential relaxations of [Na+] c which have formally been described by a serial three-compartment model (outside ↔ compartment 1 ↔ compartment 2). From the initial slopes (some m msec−1) net uptake and release of about 3 μmolm−2sec−1 Na+ are determined. Surprisingly, but consistent with previous tracer flux measurements (Mummert, H., Gradmann, D. 1991. J. Membrane Biol. 124:255–263), these Na+ fluxes are not accompanied by corresponding changes of the transplasmalemma voltage. [Na+] c is neither affected by the membrane voltage, nor by electrochemical gradients of H+ or Cl across the plasmalemma, nor by cytoplasmic ATP. The results suggest a powerful vesicular transport system for ions which bypasses the conductance of the plasmalemma. In addition, transient increases of [Na+] c have been observed to take place facultatively during action potentials. The exponential distribution of the amplitudes of these transients (many small and few large peaks) points to local events in the more ore less close vicinity of the Na+ recording electrode. These events are suggested to consist of disruption of endoplasmic vesicles due to a loss of pressure in the cytoplasm.

This is a preview of subscription content, log in to check access.

References

  1. Amtmann, A., Klieber, H.G., Gradmann, D. 1992. Cytoplasmic free Ca2+ in the marine alga Acetabularia: Measurement with Ca2+ selective microelectrodes and kinetic analysis. J. Exp. Bot. 43: 875–885

  2. Bisson, M.A., Kirst, G.O. 1980. Lamprothamnium, a euryhyaline Charophyte. I. Osmotic relations and membrane potential at steady state. J. Exp. Bot. 31:1223–1235

  3. Blumwald, E., Poole, R. 1985. Na+/H+ antiporter in isolated tonoplast vesicles from storage tissue of Beta vulgaris. Plant Physiol. 78: 163–167

  4. Clint, G.M., MacRobbie, E. 1987. Sodium efflux from perfused giant algal cells. Planta 171:247–253

  5. Garbarino, J., DuPont, F. 1988. NaCl induces a Na+/H+ antiport in tonoplast vesicles from barley roots. Plant Physiol. 86:231–236

  6. Goldfarb, V., Sanders, D., Gradmann, D. 1984. Phosphate relations of Acetabularia: phosphate pools, adenylate phosphates and 32P influx kinetics. J. Exp. Bot. 35:626–644

  7. Gradmann, D. 1970. Einfluβ von Licht, Temperatur und Auβenmedium auf das elektrische Verhalten von Acetabularia. Planta 93:323–353

  8. Gradmann, D. 1975. Analog circuit of the Acetabularia membrane. J. Membrane Biol. 25:183–208

  9. Gradmann, D., Klemke, W. 1974. Current-voltage relationship of the electrogenic pump in Acetabularia mediterranea. In: Membrane Transport in Plants. U. Zimmermann and J. Dainty, editors, pp. 131–138. Springer-Verlag, Berlin

  10. Gradmann, D., Mummert, H. 1980. Plant action potentials. In: Plant Membrane Transport: Current Conceptual Issues. R. Spanswick, W. Lucas, and J. Dainty, editors, pp. 333–344. Elsevier, NorthHolland

  11. Gradmann, D., Robinson, D.G. 1989. Does turgor prevent endocytosis in plant cells? Plant. Cell. Environ. 12:151–154

  12. Gradmann, D., Wolf, A. 1994. Cl ATPase in marine algae. Adv. Comp. Environ. Physiol. 19: 17–38

  13. Hansen, U.-P., Gradmann, D., Tittor, J., Sanders, D., Slayman, C.L. 1982. Kinetic analysis of active transport: Reduction models. Develop. Plant Biol. 7:77–84

  14. Hassidim, M., Braun, Y., Lerner, H., Reinhold, L. 1990. Na+/H+ and K+/H+ antiport in root membrane vesicles isolated from the halophyte Atriplex and the glycophyte Cotton. Plant Physiol. 94:1795–1801

  15. Hoffmann, R., Tufariello, J., Bisson, M. 1989. Effect of divalent cations on Na+ permeability of Chara corallina and freshwater grown Chara buckellii. J. Exp. Bot. 40:875–881

  16. Ikeda, M., Satoh, S., Maeshima, M., Mukohata, Y., Moritani, C. 1992. A vacuolar ATPase and pyrophosphatase in Acetabularia acetabulum. Biochim. Biophys. Acta 1070:77–82

  17. IUPAC. 1976. Recommendations for nomenclature of ion-selective electrodes. Pure Appl. Chem. 48:I-J: 129–132

  18. Katz, A., Kaback, R., Avron, M. 1986. Na+/H+ antiport in isolated plasma membrane vesicles from the halotolerant alga Dunaliella. FEBS Lett. 202:141–144

  19. Kirst, G., Bisson, M. 1982. Vacuolar and cytoplasmic pH, ion composition, and turgor pressure in Lamprothamnium as a function of external pH. Planta 155:287–295

  20. Lüttke, A., Grawe, F. 1984. A synthetic growth medium for the green alga Acetabularia mediterranea. Br. Phycol. J. 19:23–29

  21. Mummert, H., Gradmann, D. 1976. Voltage dependent potassium fluxes and the significance of action potentials in Acetabularia. Biochim. Biophys. Acta 443:443–450

  22. Mummert, H., Gradmann, D. 1991a. Ion fluxes in Acetabularia: Vesicular shuttle. J. Membrane Biol. 124:255–263

  23. Mummert, H., Gradmann, D. 1991b. Action potentials in Acetabularia: Measurement and simulation of voltage-gated fluxes. J. Membrane Biol. 124:265–273

  24. Okazaki, Y., Shimmen, T., Tazawa, M. 1984. Turgor regulation in a brakish Charophyte, Lamprothamnium succinctum. II. Changes in K+, Na+ and Cl concentrations, membrane potential and membrane resistance during turgor regulation. Plant Cell Physiol 25:573–581

  25. Reid, R., Jefferies, R., Pitman, M. 1984. Lamprothamnium, a euryhaline charophyte. IV. Membrane potential, ionic fluxes and metabolic activity during turgor adjustment. J. Exp. Bot. 35:925–937

  26. Robinson, R., Stokes, R. 1968. The Debye-Hückel formula for the activity coefficient. In: Electrolyte Solutions, pp. 229–232. Butterworths, London

  27. Saddler, H. 1970. The ionic relations of Acetabularia mediterranea. J. Exp. Bot. 21:345–359

  28. Sanders, D., Hansen, U.-P., Slayman, C. 1981. Role of the plasma membrane proton pump in pH regulation in non-animal cells. Proc. Natl. Acad. Sci. 78:5903–5907

  29. Sanders, D., Hansen, U.-P., Gradmann, D., Slayman, C. L. 1984. Generalized kinetic analysis of ion-driven cotransport systems: a unified interpretation of selective ionic effects on Michaelis parameters. J. Membrane Biol. 77:123–152

  30. Steiner, R., Oehme, M., Ammann, D., Simon, W. 1979. Neutral carrier sodium ion-selective microelectrode for intracellular studies. Anal. Chem. 51:351–353

  31. Walker, N. A., Pitman, M. 1976. Measurement of fluxes across membranes. In: Transport in Plants II. Encycl. Plant Physiol. New Series. U. Lüttge, M. Pitman, (Hrsg.). Vol. 2. Springer-Verlag, Berlin/Heidelberg

  32. Wendler, S., Zimmermann, U., Bentrup, F.-W. 1983. Relationship between cell turgor pressure, electrical membrane potential, and chloride efflux in Acetabularia mediterranea. J. Membrane Biol. 72:75–84

Download references

Author information

Additional information

This work has been supported by the Deutsche Forschungsgemeinschaft (Gr 409/12-1). Dr. A. Miller has encouraged us to use Na+-selective microelectrodes. We thank Mrs. Hanna Bork for careful maintenance of the Acetabularia cultures, and Dr. Gerhard Thiel for critical reading of the manuscript and helpful discussions.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Amtmann, A., Gradmann, D. Na+ transport in Acetabularia bypasses conductance of plasmalemma. J. Membarin Biol. 139, 117–125 (1994). https://doi.org/10.1007/BF00232430

Download citation

Key words

  • Acetabularia
  • Compartmentation
  • Net Na+ fluxes
  • Na+-selective microelectrodes
  • Vesicular shuttle