Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Molecular forms of red blood cell hexokinase

  • 34 Accesses

  • 12 Citations

Summary

Mammalian red blood cell hexokinase has been shown to exist in two or more distinct molecular forms, which are separable by ion-exchange chromatography. Of these forms just one corresponds to hexokinase type I from other tissues, while the others differ from any previously reported hexokinase isozyme. Analysis of several molecular properties of the three major forms (la, Ib and Ic in the order of their elution from DE-52 columns) of hexokinase prepared from human red cells and of the two forms purified from rabbit reticulocytes, shows significant differences in the isoelectric point. The kinetic and regulatory characteristics, the molecular weight, the temperature and pH-dependence of the various isozymes were similar.

The hexokinase isozymic pattern is largely dependent upon red blood cell age. Among all, hexokinase Ib is the predominant form in rabbit reticulocytes and becomes the minor component in the older cells; a similar situation has also been found in the human erythrocyte. At present the molecular basis of hexokinase heterogeneity remains unknown, however preliminary experimental findings indicate a post-translational modification as a possible mechanism.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Gonzales, C., Ureta, T., Sanchez, R. and Niemeyer, H., 1964. Biochem. Biophys. Res. Commun. 16: 347–352.

  2. 2.

    Katzen, H. M. and Schimke, R. T., 1965. Proc. Nat. Acad. Sci. USA 54: 1218–1225.

  3. 3.

    Katzen, H. M., Soderman, D. D. and Nitowsky, H. M., 1965. Biochem. Biophys. Res. Commun 19: 377–382.

  4. 4.

    Katzen, H. M., Soderman, D. D. and Cirillo, V. J., 1968. Ann. N.Y. Acad. Sci. 151: 351–360.

  5. 5.

    Walker, D. G., 1966. In Essays in Biochemistry (Campbell, P. M. and Greville, G. D., eds.) vol. 2, pp. 33–67, Academic Press, New York.

  6. 6.

    Colowick, S. P., 1973. In The Enzymes (Boyer, P. D., ed.) vol. IX, pp. 1–48, Academic Press, New York.

  7. 7.

    Purich, D. L., Fromm, H. J., Rudolph, F. B., 1973. In Advances in Enzymology (Meister, A., ed.) vol. 39, pp. 250–326, John Wiley & Sons, New York.

  8. 8.

    Ureta, T., 1975. In Isozymes (Markert, C. L. ed.) vol. III, pp. 575–601, Academic Press, New York.

  9. 9.

    Niemeyer, H., Ureta, T. and Turri, C. L., 1975. Mol. Cell. Biochem. 6: 109–126.

  10. 10.

    Wilson, J. E., 1980. In Current Topics in Cellular Regulation (Horecker, B. L. and Stadtman, E. R., eds.) vol. 16, pp. 1–54, Academic Press, New York.

  11. 11.

    Eaton, G. M., Brewer, G. J. and Tashian, R. E., 1966. Nature 212: 944–946.

  12. 12.

    Holmes, E. W., Malone, J. I., Winegrad, A. I. and Oski, F. A., 1967. Science 156: 646–648.

  13. 13.

    Kaplan, J. C. and Beutller, E., 1968. Science 159: 215–216.

  14. 14.

    Schroter, W. and Tillman, W., 1968. Biochem. Biophys. Res. Commun. 31: 92–97.

  15. 15.

    Brewer, G. J. and Knutsen, C. A., 1968. Science 159: 650–651.

  16. 16.

    Holmes, E. W., Malone, J., Winegrad, A. I. and Oski, F. A., 1968. Science 159: 651.

  17. 17.

    Allay, C., Alper, C. A. and Nathan, D. G., 1970. Blood 36: 219–227.

  18. 18.

    Rogers, P. A., Fisher, R. A. and Harris, H., 1975. Clin. Chim. Acta 65: 291–298.

  19. 19.

    Rijksen, G., Schoop, I. and Staal, G. E. J., 1977. Clin. Chim. Acta 80: 193–202.

  20. 20.

    Fornaini, G., Magnani, M., M. Dachá, M., Bossú, M. and Stocchi, V., 1978. Mech. Ageing Dev. 8: 249–256.

  21. 21.

    Magnani, M., Stocchi, V., Bossú, M., Dachá, M. and Fornaini, G., 1979. Mech. Ageing Dev. 11: 209–217.

  22. 22.

    Gellerich, F. M. and Augustin, H. W., 1979. Acta Biol. Med. Ger. 38: 1091–1099.

  23. 23.

    Gahr, M., 1980. Hoppe-Seyler's Z., Physiol. Chem. 361: 829–837.

  24. 24.

    Gahr, M., 1980. Br. J. Haematol. 46: 529–535.

  25. 25.

    Rijksen, G., Jansen, G., Kraaijnhagen, R. G., VanDerVlist, M., Vlug, A. M. C. and Staal, G. E. J., 1981. Biochim. Biophys. Acta 659: 292–301.

  26. 26.

    Magnani, M., Stocchi, V., Ninfali, P., Dachá, M., Bossú, M. and Fornaini, G., 1979. Bull. Mol. Biol. Med. 4: 90–99.

  27. 27.

    Magnani, M., Stocchi, V., Dachá, M., Canestrari, F. and Fornaini, G., 1980. FEBS Lett. 120: 264–266.

  28. 28.

    Grossbard, L. and Schimke, T. R., 1966. J. Biol. Chem. 241: 3546–3560.

  29. 29.

    Magnani, M., Serafini, G., Stocchi, V., Bossú, M. and Dachá, M., 1982. Arch. Biochem. Biosphys. 216: in press.

  30. 30.

    Stocchi, V., Magnani, M., Canestrari, F., Dacha, M. and Fornaini, G., 1981. J. Biol. Chem. 256: 7856–7862.

  31. 31.

    Sapico, V. and Anderson, R. L., 1967. J. Biol. Chem. 242: 5086.

  32. 32.

    Menashi, S. and Grant, M. E., 1979. Biochem. J. 178: 777–784.

  33. 33.

    Stocchi, V., Stulzini, A. and Magnani, M., 1982. J. Chromatogr. 237: 330–335.

  34. 34.

    Stocchi, V., Magnani, M., Canestrari, F., Dachá, M. and Fornaini, G., 1982. J. Biol. Chem. 257: 2357–2364.

  35. 35.

    Chou, A. C. and Wilson, J. E., 1972. Arch. Biochem. Biophys. 151: 48–55.

  36. 36.

    Redkar, V. D. and Kenkare, V. W., 1972. J. Biol. Chem. 247: 7576–7584.

  37. 37.

    Easterby, J. B. and O'Brien, J., 1973. Eur. J. Biochem. 38: 201–211.

  38. 38.

    Quadri, S. S. and Easterby, J. S., 1980. Anal. Biochem. 105: 299–303.

  39. 39.

    Holroyde, M. J., Chester, J. S. M., Trayer, I. P. and Walker, D. J., 1976. Biochem. J. 153: 351–361.

  40. 40.

    Holroyde, M. J. and Trayer, I. P., 1976. FEBS Lett. 62: 215–219.

  41. 41.

    Wright, C. L., Warsy, A. S., Holroyde, M. J., Trayer, I. P., 1978. Biochem. J. 175: 125–135.

  42. 42.

    Stocchi, V., Magnani, M., Ninfali, P. and Dacha, M., 1980. J. Solid-Pase Biochem. 5: 11–18.

  43. 43.

    Magnani, M., Dacha, M., Stocchi, V., Ninfali, P. and Fornaini, G., 1980. J. Biol. Chem. 255: 1752–1756.

  44. 44.

    Ninfali, P., Magnani, M., Dachá, M., Stocchi, V. and Fornaini, G., 1980. Biochem. Int. 1: 574–583.

  45. 45.

    Ning, J., Purich, D. L. and Fromm, H. J., 1969. J. Biol. Chem. 244: 3940–3946.

  46. 46.

    Kosow, D. P. and Rose, I. A., 1970. J. Biol. Chem. 245: 198–204.

  47. 47.

    Rijksen G. and Staal, G. E. J., 1977. Biochim. Biophys. Acta 485: 75–86.

  48. 48.

    Vowles, D. T. and Easterby, J. S., 1979. Biochim. Biophys. Acta 566: 283–295.

  49. 49.

    Wilson, J. E., 1978. Arch. Biochem. Biophys. 185: 88–89.

  50. 50.

    Wilson, J. E., 1978. Biochem. Biophys. Res. Commun. 82: 745–749.

  51. 51.

    Britton, H. G. and Clarke, J. B., 1972. Biochem. J. 128: 104p.

  52. 52.

    Minakami, S. and Yoshikawa, H., 1966. J. Biochem. 59: 139–145.

  53. 53.

    Brewer, G. J., 1974. In The Red Blood Cell (D. Mec N. Surgenor Ed.) vol. 1 pp. 387, Academic Press, New York.

  54. 54.

    Rapoport, T. A., Henrich, R., Jacobasch, G. and Rapoport, S., 1974. Eur. J. Biochem. 42: 107–120.

  55. 55.

    De Verdier, C. H. and Garby, L., 1965. Scand. J. Haematol. 2: 305–317.

  56. 56.

    Rose, I.A., Warms, J. V. B. and O'Connell, E. L., 1964. Biochem. Biophys. Res. Commun. 15: 33–37.

  57. 57.

    Kosow, D. P., Oski, F. A., Warms, J. V. B. and Rose, I. A., 1973. Arch. Biochem. Biophys. 157: 114–124.

  58. 58.

    Gerber, G., Preisler, H., Heinrich, R. and Rapoport, S. M., 1974. Eur. J. Biochem. 45: 39–52.

  59. 59.

    Ponce, J., Roth, J. and Horkness, D. P., 1971. Biochim. Biophys. Acta 250: 63–74.

  60. 60.

    Duhun, J., 1975. Biochim. Biophys. Acta 385: 68–80.

  61. 61.

    Rose, I. A., Warms, J. V. B. and Kosow, D. P., 1974. Arch. Biochem. Biophys. 164: 729–735.

  62. 62.

    Rijksen, G. and Staal, G. E. J., 1977. FEBS Lett. 80: 61–65.

  63. 63.

    Magnani, M., Stocchi, V., Dachá, M. and Fornaini, G., 1981. Ital. J. Biochem. 30: 217–228.

  64. 64.

    Magnani, M., Stocchi, V., Ninfali, P., Dachá, M. and Fornaini, G., 1980. Biochim. Biophys. Acta. 615: 113–120.

  65. 65.

    Turner, B. M., Fisher, R. A. and Harris, H., 1975. Isozymes (Markert, C. L., ed.) vol. 1, pp. 781–795, Academic Press, New York.

  66. 66.

    Chapman, R. G. and Shaumberg, L., 1967. Brit. J. Haematol. 13: 665–678.

  67. 67.

    Brewer, J. G., Powell, D. R., 1963. Nature 104: 704–705.

  68. 68.

    Gerber, G. K. G., Schultze, M. and Rapoport, S. M., 1970. Eur. J. Biochem. 17: 445–449.

  69. 69.

    Malone, J. I., Winegrad, A. I., Oski, F. A. and Holmes, E. W., 1968. New Engl. J. Med. 279: 1071–1077.

  70. 70.

    Stockman, J. A. and Oski, F. A., 1978. In Current Topics in Hematology (Piomelli, S. and Yachin, S., eds.) vol. I pp. 194–233, Alan R. Liss Inc. New York.

  71. 71.

    Stocchi, V., Magnani, M., Novelli, G. Dachá, M., Fornaini, G., 1982. Unpublished results.

  72. 72.

    Fornaini, G., Dachá, M., Magnani, M., Fazi, A., Cuppini, C. and Bossú, M., 1978. Enzymes 23: 46–51.

  73. 73.

    Magnani, M., Dachá, M., Bossú, M. and Fornaini, G., 1978. Comp. Biochem. Physiol. 60B: 323–327.

  74. 74.

    Rothe, G. M., 1980. Hum. Genet. 56: 129–155.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fornaini, G., Dachà, M., Magnani, M. et al. Molecular forms of red blood cell hexokinase. Mol Cell Biochem 49, 129–142 (1982). https://doi.org/10.1007/BF00231174

Download citation

Keywords

  • Isoelectric Point
  • Regulatory Characteristic
  • Hexokinase
  • Human Erythrocyte
  • Molecular Property