Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Acetylcholinesterase molecular forms from rat and human erythrocyte membrane

Summary

  1. 1.

    Some of the biochemical characteristics of acetylcholinesterase from rat and human erythrocytes were studied.

  2. 2.

    Both for rat and man two different acetylcholinesterase molecular forms were identified by gel electrophoresis. The faster moving form is less conspicuous and is not present in all individuals, therefore single-banded and double-banded preparations of red cell acetylcholinesterase can be obtained. The two components appear to be isomers of different molecular size (approximately Mr 150 000 and Mr 245 000) as estimated by gel electrophoresis at different polyacrylamide concentrations.

  3. 3.

    A single band, with a molecular weight of approximately 135 000, was obtained by sodium dodecyl sulphate gel electrophoresis. These results suggest that the faster moving form is a protomer and the slower a dimer.

  4. 4.

    The different sedimentation values obtained by density gradient centrifugation in the presence of Triton X-100 of double-banded (5.3S) and single-banded (6.3S) rat and human acetylcholinesterase preparations, are consistent with a protomer-dimer hypothesis.

  5. 5.

    The isoelectric pattern observed for both double- and single-banded preparations was similar for rat and man acetylcholinesterase and showed a considerable micro heterogeneity (thirteen activity bands for rat and eleven for man with isoelectric values from 4.6 to 5.9).

This is a preview of subscription content, log in to check access.

Abbreviations

Iso-OMPA:

tetraisopropylpyrophosphoramide

AChE:

acetylcholinesterase

References

  1. 1.

    Scarsella, G., Toschi, G., Chiappinelli, V. A. and Giacobini, E., 1978. Develop. Neurosci. 1: 133–141.

  2. 2.

    Scarsella, G., Toschi, G., Bareggi, S. R. and Giacobini, E., 1979. J. Neurosci. Res. 4: 19–24.

  3. 3.

    Rieger, F. and Vigny, M., 1976. J. Neurochem. 27: 121–129.

  4. 4.

    Couraud, J. Y., Koenig, H. L. and Di Giamberardino, L., 1980. J. Neurochem. 34: 1209–1218.

  5. 5.

    Rosenberry, T. L., Chen, Y. T. and Bock, E., 1974. Biochemistry 13: 3068–3079.

  6. 6.

    Vigny, M., Bon, S., Massoulié, J. and Gisiger, V., 1979. J. Neurochem. 33: 559–565.

  7. 7.

    Bon, S., Vigny, M. and Massoulié, J., 1979. Proc. Natl. Acad. Sci. USA 76: 2546–2550.

  8. 8.

    Ott, P., Jenny, B. and Brodbeck, U., 1975. Eur. J. Biochem. 57: 469–480.

  9. 9.

    Ott, P. and Brodbeck, U., 1978. Eur. J. Biochem. 88: 119–125.

  10. 10.

    Niday, E., Wang, C. S. and Alaupovic, P., 1977. Biochim. Biophys. Acta, 469: 180–193.

  11. 11.

    Meneguz, A., Bisso, G. M. and Michalek, H., 1981. Clin. Toxicol 18: 1443–1451.

  12. 12.

    Dodge, J. T., Mitchell, C., Hanahan, D. J., 1963. Arch. Biochem. Biophys. 100: 119–130.

  13. 13.

    Hanahan, D.J. and Ekholm, J. E., 1974. Methods in Enzymol. 31: 168–172.

  14. 14.

    Chan, S. L., Shirachi, D. Y., Bhargava, H. N., Gardner, E. and Trevor, A. J., 1972. J. Neurochem. 19: 2747–2758.

  15. 15.

    Adamson, E. D., 1977. J. Neurochem. 28: 605–615.

  16. 16.

    Biagioni, S. and Scarsella, G., 1980. In: Synaptic Constituents in Health and Disease (Brzin, M., Sket, D. and Bachelard, H., eds.). Proceedings of the Third Meeting of the European Society for Neurochemistry, p. 575, Mladinska Knjiga, Ljubljana, Pergamon Press, Oxford.

  17. 17.

    Ellman, G. L., Courtney, K. D., Andres, V. jr, and Featherstone, R. M., 1961. Biochem. Pharmacol. 7: 88–95.

  18. 18.

    Lowry, O. H., Rosenbrough, N. J., Farr, A. L. and Randall, R. J., 1951. J. Biol. Chem. 193: 265–275.

  19. 19.

    Wang, C. S. and Smith, R. L., 1975. Anal. Biochem. 63: 414–417.

  20. 20.

    Udenfriend, S., Stein, S., Böhlen, P., Dairman, W., Leimgruber, W. and Weigele, M., 1972. Science 178: 871–872.

  21. 21.

    Clarke, J.T., 1964. Ann. N.Y. Acad. Sci. 121: 428–436.

  22. 22.

    Hedrick, J. L. and Smith, A. J., 1968. Arch. Biochem. Biophys. 126: 155–164.

  23. 23.

    Koelle, G. B., 1951. J. Pharmacol. Exp. Ther. 103: 153–171.

  24. 24.

    Chubb, I. W. and Smith, A. D., 1975. Proc. R. Soc. Lond. B, 191: 245–261.

  25. 25.

    Weber, K. and Osborn, M., 1969. J. Biol. Chem. 244: 4406–4412.

  26. 26.

    Righetti, P. G. and Caravaggio, T., 1976. J. Chromatogr. 127: 1–28.

  27. 27.

    Martinez de Melian, E.R., Morero, R. D. and Farias, R. N., 1976. Biochim. Biophys. Acta 422: 127–137.

  28. 28.

    Coates, P. M. and Simpson, N. E., 1972. Science 179: 1466–1467.

  29. 29.

    Das, P. K., Hong-Ming Lo, E. and Goedde, H. W., 1977. Hoppe-Seylers's Z. Physiol. Chem. 358: 149–157.

  30. 30.

    Berman, J. D., 1973. Biochemistry 12: 1710–1715.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Biagionia, S., Scarsella, G., Settimi, L. et al. Acetylcholinesterase molecular forms from rat and human erythrocyte membrane. Mol Cell Biochem 47, 183–190 (1982). https://doi.org/10.1007/BF00229602

Download citation

Keywords

  • Acetylcholinesterase
  • Erythrocyte Membrane
  • Gradient Centrifugation
  • Human Erythrocyte
  • Density Gradient Centrifugation