Advertisement

Experimental Brain Research

, Volume 101, Issue 2, pp 231–240 | Cite as

Substance P-containing hypothalamic afferents to the monkey hippocampus: an immunocytochemical, tracing, and coexistence study

  • Robert Nitsch
  • Casaba Leranth
Original Paper

Abstract

In order to identify the synaptic connections of substance P-containing afferents within the hypothalamo-hippocampal projection of the monkey, we performed a combined light and electron microscopic, immunocytochemical study, made lesions of the fimbriafornix, and employed retrograde tracing using WGA-HRP. Furthermore, coexistence studies for substance P and GAD were performed to identify the putative transmitters of these hypothalamic projection neurons. A plexus of large substance P-immunoreactive terminals was identified in both the innermost portion of the molecular layer and in CA2. Axon terminals in both plexuses established exclusively asymmetric synapses with spines and dendritic shafts. Substance P-immuno-reactive boutons were degenerating 5 days after lesioning, and had disappeared 10 days after ipsilateral fimbria-fornix transection. Thus, these terminals were of extrinsic origin. In contrast, immunoreactive fibers in the outer third of the dentate molecular layer remained unaffected by the lesion. Retrograde tracing combined with immunostaining for substance P revealed the parent cell bodies of the extrinsic substance P-containing afferents in the supramammillary nucleus. Colocalization studies employing a consecutive semi-thin sections technique indicate that these large substance P-containing projection neurons lack GABA as an inhibitory transmitter. These results suggest that hypothalamic afferents of the monkey hippocampus contain substance P. Because these afferents lack GABA as an inhibitory transmitter and establish exclusively asymmetric synapses, this projection may excite hippocampal target neurons.

Key words

Hippocampus WGA-HRP Fimbria-fornix lesion GABAergic neurons Monkey 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amaral DG, Cowan WM (1980) Subcortical afferents to the hippocampal formation in the monkey. J Comp Neurol 189:573–591CrossRefGoogle Scholar
  2. Amaral DG, Insausti R, Cowan WM (1984) The commissural connections of the monkey hippocampal formation. J Comp Neurol 224:307–336CrossRefGoogle Scholar
  3. Bland BH (1986) The physiology and pharmacology of hippocampal formation theta rhythm. Prog Neurobiol 26:1–54CrossRefGoogle Scholar
  4. Contreras CM, Mexicano G, Guzman-Flores C (1981) A stereotaxic brain atlas of the green monkey (Cercopithecus aethiops). Bull Est Med Biol Mex 31:383–428Google Scholar
  5. Crowne DP, Radcliffe DD (1975) Some characteristics of functional relations of the electrical activity of the primate hippocampus and hypotheses of hippocampal function. In: Isaacson RL, Pribram KH (eds) The hippocampus, vol 2. Plenum Press, New York, pp 185–206CrossRefGoogle Scholar
  6. Demeter S, Rosene DL, Van Hoesen GW (1985) Interhemispheric pathways of the hippocampal formation, presubiculum, entorhinal and posterior hippocampal cortices in the rhesus monkey: the structure and function of the hippocampal commissures. J Comp Neurol 233:30–47CrossRefGoogle Scholar
  7. Dent JA, Galvi NJ, Stanfield BB, Cowan MW (1983) The mode of termination of the hypothalamic projection to the dentate gyrus: an EM autoradiographic study. Brain Res 258:1–10CrossRefGoogle Scholar
  8. Eccles JC (1964) The physiology of synapses. Springer, Berlin HeidelbergCrossRefGoogle Scholar
  9. Freund T (1989) GABAergic septo-hippocampal neurons contain parvalbumin. Brain Res 478:375–381CrossRefGoogle Scholar
  10. Freund T, Antal M (1988) GABA-containing neurons in the septum control inhibitory interneurons in the hippocampus. Nature 336:170–173CrossRefGoogle Scholar
  11. Gulyás AI, Seress L, Tóth K, Acsády L, Antal M, Freund T (1991) Septal GABAergic neurons innervate inhibitory interneurons in the hippocampus of the macaque monkey. Neuroscience 41:381–390CrossRefGoogle Scholar
  12. Haglund L, Swanson LW, Koehler C (1984) The projection of the supramammillary nucleus to the hippocampal formation: an immunohistochemical and anterograde transport study with the lectin PHA-L in the rat. J Comp Neurol 229:171–185CrossRefGoogle Scholar
  13. Hsu SM, Raine L, Fanger H (1981) The use of avidin-biotin-peroxidase complex (ABC) in immunoproxidase techniques: a comparison between ABC and unlabeled antibody (peroxidase) procedures. J Histochem Cytochem 29:577–590CrossRefGoogle Scholar
  14. Ino T, Itoh K, Sugimoto T, Kaneko T, Kamiya H, Mizuno N (1988) The supramammillary region of the cat sends substance P-like immunoreactiv axons to the hippocampal formation and the entorhinal cortex. Neurosci Lett 90:259–264CrossRefGoogle Scholar
  15. Iritani M, Fujii M, Satoh K (1989) The distribution of substance P in the cerebral cortex and hippocampal formation: an immunocytochemical study in the monkey and rat. Brain Res Bull 22:295–303CrossRefGoogle Scholar
  16. Jakab RJ, Leranth C (1994) The septum. In: Paxinos G (ed) The rat brain. Academic Press, New York LondonGoogle Scholar
  17. Katsumaru H, Kosaka T, Heizmann CW, Hama K (1988) Immunocytochemical study of GABAergic neurons containing the calcium-binding protein parvalbumin in the rat hippocampus. Exp Brain Res 72:347–362PubMedGoogle Scholar
  18. Kawaguchi Y, Katsumaru H, Kosaka T, Heizmann CW, Hama K (1987) Fast spiking cells in rat hippocampus (CA1) region contain the calcium-binding protein parvalbumin in the rat hippocampus. Exp Brain Res 416:369–374CrossRefGoogle Scholar
  19. Kitt CA, Mitchell SJ, DeLong MR, Wainer BH, Price LD (1987) Fiber pathways of basal forebrain cholinergic neurons in monkeys. Brain Res 406:192–206CrossRefGoogle Scholar
  20. Kosaka T, Katsumaru H, Hama K, Wu JY, Heizmann CW (1987) GABAergic neurons containing the Ca2+-binding protein parvalbumin in the rat hippocampus and dentate gyrus. Brain Res 419:119–130CrossRefGoogle Scholar
  21. Laurberg S, Soerensen KE (1981) Associational and commissural collaterals of neurons in the hippocampal formation (hilus fasciae dentatae and subfield CA3). Brain Res 212:287–300CrossRefGoogle Scholar
  22. Leranth C, Ribak CE (1991) Calcium-binding proteins are concentrated in the CA2 fields of the monkey hippocampus: a possible key to this regions resistance to epileptic damage. Exp Brain Res 85:129–136CrossRefGoogle Scholar
  23. Leranth C, Nitsch R (1994) Morphological evidence that hypothalamic substance P-containing afferents are capable of filtering the signal flow in the monkey hippocampal formation. J Neurosci 14(7): 4079–4084CrossRefGoogle Scholar
  24. Leranth C, MacLusky NJ, Brown TJ, Chen EC, Redmond DE, Naftolin F (1992) Transmitter content and afferent connections of estrogen-sensitive progestin receptor-containing neurons in the primate hypothalamus. Neuroendocrinology 55:667–682CrossRefGoogle Scholar
  25. Lübbers K, Frotscher M (1987) Fine structure and synaptic connections of identified neurons in the rat fascia dentata. Anat Embryol 177:1–14CrossRefGoogle Scholar
  26. Matthews DA, Cotman CW, Lynch G (1976) An electron microscopic study of lesion induced synaptogenesis in the dentate gyrus of the adult rat. I. Magnitude and time course of degeneration. Brain Res 115:1–21CrossRefGoogle Scholar
  27. Mizumori SJY, McNaughton BL, Barnes CA (1989) A comparison of supramammillary and medial septal influences on hippocampal field potentials and single-unit activity. J Neurophysiol 61:15–31CrossRefGoogle Scholar
  28. Nicoll RA, Schenker C, Leeman SE (1980) Substance P as a transmitter candidate. Ann Rev Neurosci 2:227–268CrossRefGoogle Scholar
  29. Nitsch R, Klauer G (1989) Cryostat sections for coexistence studies and preembedding electron microscopic immunocytochemistry of central and peripheral nervous system tissue. Histochemistry 92:459–465CrossRefGoogle Scholar
  30. Nitsch R, Leranth C (1993) Calretinin immunoreactivity in the monkey hippocampal formation. II. Intrinsic GABAergic and hypothalamic non-GABAergic systems. An experimental tracing and coexistence study. Neuroscience 55:797–812CrossRefGoogle Scholar
  31. Nitsch R, Soriano E, Frotscher M (1990a) The parvalbumin-containing nonpyramidal neurons in the rat hippocampus. Anat Embryol 181:413–425CrossRefGoogle Scholar
  32. Nitsch R, Leranth C, Frotscher M (1990b) Most somatostatin-immunoreactive neurons in the rat fascia dentata do not contain the calcium-binding protein parvalbumin. Brain Res 528:327–329CrossRefGoogle Scholar
  33. Oertel WH, Schmechel DE, Mugnaini E, Tappaz ML, Kopin IJ (1982) Immunocytochemical localization of glutamate decarboxylase in the rat cerebellum with a new antiserum. Neuroscience 6:2715–2735CrossRefGoogle Scholar
  34. Pasquier DA, Reinoso-Suarez F (1976) Direct projections from the hypothalamus to hippocampus in the rat demonstrated by retrograde transport of horseradish peroxidase. Brain Res 108:165–169CrossRefGoogle Scholar
  35. Pasquier DA, Reinoso-Suarez F (1978) The topographic organization of hypothalamic and brain stem projections to the hippocampus. Brain Res Bull 3:373–389CrossRefGoogle Scholar
  36. Rosene DL, Van Hoesen GW (1987) The hippocampal formation of the primate brain. Cereb Cortex 6:345–456CrossRefGoogle Scholar
  37. Saper CB (1985) Organization of cerebral cortical afferent systems in the rat. II. Hypothalamo-cortical projections. J Comp Neurol 237:21–46CrossRefGoogle Scholar
  38. Segal M (1979) A potent inhibitory monosynaptic hypothalamo-hippocampal connection. Brain Res 162:137–141CrossRefGoogle Scholar
  39. Segal M, Landis S (1974) Afferents to the hippocampus of the rat studied with the method of retrograde transport of horseradish peroxidase. Brain Res 78:1–15CrossRefGoogle Scholar
  40. Seress L, Gulyás AI, Freund TF (1991) Parvalbumin- and calbind- in D28k-immunoreactive neurons in the hippocampal formation of the Macaque monkey. J Comp Neurol 313:162–177CrossRefGoogle Scholar
  41. Soriano E, Nitsch R, Frotscher M (1990) Axo-axonic chandelier cells in the rat fascia dentata: Golgi-electron microscopy and immunocytochemical studies. J Comp Neurol 293:1–25CrossRefGoogle Scholar
  42. Stanfield BB, Cowan MW (1984) An EM autoradiographic study of the hypothalamo-hippocampal projection. Brain Res 309:229–307CrossRefGoogle Scholar
  43. Stewart M, Fox SE (1989a) Monkeys have hippocampal theta activity. Soc Neurosci Abstr 15:1250Google Scholar
  44. Stewart M, Fox SE (1989b) Do septal neurons pace the hippocampal theta rhythm? Trends Neurosci 13:163–168CrossRefGoogle Scholar
  45. Swanson LW, Cowan MW (1975) Hippocampal-hypothalamic connections: origin in subicular complex, not Ammon's horn. Science 189:303–304CrossRefGoogle Scholar
  46. Veazey RB, Amaral DG, Cowan MW (1982) The morphology and the connections of the posterior hypothalamus in the cynomolgus monkey (Macaca fascicularis). II. Efferent connections. J Comp Neurol 169:63–98Google Scholar
  47. Vertes RP (1986) Brain stem modulation of the hippocampus. Anatomy, physiology and significance. In: Isaacson RL, Pribram KH (eds) The Hippocampus, vol. 4, Plenum Press, New York, pp 41–45CrossRefGoogle Scholar
  48. Wyss JM, Swanson LW, Cowan WM (1979a) A study of subcortical afferents to the hippocampal formation in the rat. Neuroscience 4:463–476CrossRefGoogle Scholar
  49. Wyss JM, Swanson LW, Cowan WM (1979b) Evidence for an input to the molecular layer and the stratum granulosum of the dentate gyrus from the supramammillary region of the hypothalamus. Anat Embryol 156:165–176CrossRefGoogle Scholar
  50. Yanagihara M, Niimi K (1988) Substance P-like immunoreactive projection of the hippocampal formation from the posterior hypothalamus in the cat. Brain Res Bull 22:689–694CrossRefGoogle Scholar
  51. Zipp F, Nitsch R, Soriano E, Frotscher M (1989) Entorhinal fibers form synaptic contacts on parvalbumin-immunoreactive neurons in the rat fascia dentata. Brain Res 495:161–166CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Robert Nitsch
    • 1
    • 2
  • Casaba Leranth
    • 2
    • 3
  1. 1.Institute of AnatomyHumboldt University Clinic (Charité)BerlinGermany
  2. 2.Department of Obstetrics and GynecologySchool of Medicine, Yale UniversityNew HavenUSA
  3. 3.Section of NeurobiologySchool of Medicine, Yale UniversityNew HavenUSA

Personalised recommendations