Advertisement

Experimental Brain Research

, Volume 101, Issue 2, pp 216–230 | Cite as

The cisternal organelle as a Ca2+-storing compartment associated with GABAergic synapses in the axon initial segment of hippocampal pyramidal neurones

  • Istvan Benedeczky
  • Elek Molnár
  • Péter Somogyi
Original Paper

Abstract

The axon initial segment of cortical principal neurones contains an organelle consisting of two to four stacks of flat, membrane-delineated cisternae alternating with electron-dense, fibrillar material. These cisternal organelles are situated predominantly close to the synaptic junctions of GABAergic axo-axonic cell terminals. To examine the possibility that the cisternal organelle is involved in Ca2+ sequestration, we tested for the presence of Ca2+-ATPase in the cisternal organelles of pyramidal cell axons in the CA1 and CA3 regions of the hippocampus. Electron microscopic immunocyto-chemistry using antibodies to muscle sarcoplasmic reticulum ATPase revealed immunoreactivity associated with cisternal organelle membranes. The localisation of Ca2+-ATPase in cisternal organelles was also confirmed by enzyme cytochemistry, which produced reaction product in the lumen of the cisternae. These experiments provide evidence for the presence of a Ca2+ pump in the cisternal organelle membrane, which may play a role in the sequestration and release of Ca2+. Cisternal organelles are very closely aligned to the axolemma and the outermost cisternal membrane is connected to the plasma membrane by periodic electron-dense bridges as detected in electron micrographs. It is suggested that the interface acts as a voltage sensor, releasing Ca2+ from cisternal organelles upon depolarisation of the axon initial segment, in a manner similar to the sarcoplasmic reticulum of skeletal muscle. The increase in intra-axonal Ca2+ may regulate the GABAA receptors associated with the axo-axonic cell synapses, and could affect the excitability of pyramidal cells.

Key words

Calcium Calcium-activated ATP-ase GABA Immunocytochemistry Synapse 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ando T, Fujimoto K, Mayahara H, Miyajima H, Ogawa K (1981) A new one-step method for the histochemistry and cytochemistry of Ca2+-ATPase activity. Acta Histochem Cytochem 14:705–726CrossRefGoogle Scholar
  2. Andrews SB, Leapman RD, Landis DMD, Reese TS (1988) Activity-dependent accumulation of calcium in Purkinje cell dendritic spines. Proc Nat Acad Sci USA 85:1682–1685CrossRefGoogle Scholar
  3. Audigier SMP, Wang JKT, Greengard P (1988) Membrane depolarization and carbamoylcholine stimulate phosphatidylinositol turnover in intact nerve terminals. Proc Natl Acad Sci USA 85:2859–2863CrossRefGoogle Scholar
  4. Berridge MJ (1993) Inositol trisphosphate and calcium signalling. Nature 361:315–325CrossRefGoogle Scholar
  5. Berridge MJ, Irvine RF (1989) Inositol phosphates and cell signalling. Nature 341:197–205CrossRefGoogle Scholar
  6. Buhl EH, Halasy K, Somogyi P (1993) Hippocampal unitary IP-SPs: identified sources and number of release sites. Eur J Neurosci [Suppl 6]:225Google Scholar
  7. Buhl EH, Halasy K, Somogyi P (1994a) Hippocampal unitary inhibitory postsynaptic potentials: diverse sources and number of release sites. Nature 368:823–828CrossRefGoogle Scholar
  8. Buhl EH, Han Z.-S., Lorinczi Z, Stezhka VV, Karnup SV, Somogyi P (1994b) Physiological properties of anatomically identified axo-axonic cells in the rat hippocampus. J Neurophysiol 71:1289–1307CrossRefGoogle Scholar
  9. Cohen RS, Kriho V (1991) Localization of ATPase activity in dendritic spines of the cerebral cortex. J Neurocytol 20:703–715CrossRefGoogle Scholar
  10. Conradi S (dy1969) Observations on the ultrastructure of the axon hillock and intial axon segment of lumbosacral motoneurones in the cat. Acta Physiol Scand [Supp. 332]: 65–84Google Scholar
  11. de Zeeuw CI, Ruigrok TJH, Holstege JC, Schalekamp MPA, Voogd, J (1990) Intracellular labeling of neurons in the medial accessory olive of the cat: III. Ultrastructure of axon hillock and initial segment and their GABAergic innervation. J Comp Neurol 300:495–510CrossRefGoogle Scholar
  12. Freund TF, Martin KAC, Soltesz I, Somogyi P, Whitteridge D (1989) Arborisation pattern and postsynaptic targets of physiologically identified thalamocortical afferents in the monkey striate cortex. J Comp Neurol 289:315–336CrossRefGoogle Scholar
  13. Galione A (1992) Ca2+-induced Ca2+ release and its modulation by cyclic ADP-ribose. Trends Pharmacol Sci 13:304–306CrossRefGoogle Scholar
  14. Grover AK, Khan I (1992) Calcium pump isoforms: diversity, selectivity and plasticity. Cell Calcium 13:9–17CrossRefGoogle Scholar
  15. Hashimoto J, Bruno B, Lew DP, Pozzan T, Volpe P, Meldolesi J (1988) Immunocytochemistry of calciosomes in liver and pancreas. J Cell Biol 107:2523–2531CrossRefGoogle Scholar
  16. Henkart M, Landis DMD, Reese TS (1976) Similarity of junctions between plasma membranes and endoplasmic reticulum in muscle and neurons. J Cell Biol 70:338–347CrossRefGoogle Scholar
  17. Henzi V, MacDermott AB (1992) Characteristics and function of Ca2+- and inositol 1,4,5-trisphosphate-releasable stores of Ca2+ in neurons. Neuroscience 46:251–273CrossRefGoogle Scholar
  18. Inoue M, Oomura Y, Yakushiji T, Akaike N (1986) Intracellular calcium ions decrease the affinity of the GABA receptor. Nature 324:156–158CrossRefGoogle Scholar
  19. Inui M, Saito A, Fleischer S (1987) Purification of the ryanodine receptor and identity with feet structures of junctional terminal cisternae of sarcoplasmic reticulum from fast skeletal muscle. J Biol Chem 262:1740–1747PubMedGoogle Scholar
  20. Kortje KH, Freihofer D, Rahmann H (1990) Cytochemical localization of high-affinity Ca2+-ATPase activity in synaptic terminals. J Histochem Cytochem 38:895–900CrossRefGoogle Scholar
  21. Kosaka T (1980) The axon initial segment as a synaptic site: ultra-structure and synaptology of the initial segment of the pyramidal cell in the rat hippocampus (CA3 region). J Neurocytol 9:861–882CrossRefGoogle Scholar
  22. Krenács T, Molnár E, Dobó E, Dux L (1989) Fibre typing using sarcoplasmic reticulum Ca2+-ATPase and myoglobin immunohistochemistry in rat gastrocnemius muscle. Histochem J 21:145–155CrossRefGoogle Scholar
  23. Kuwajima G, Futatsugi A, Niinobe M, Nakanishi S, Mikoshiba K (1992) Two types of ryanodine receptors in mouse brain: skeletal muscle type exclusively in Purkinje cells and cardiac muscle type in various neurons. Neuron 9:1133–1142CrossRefGoogle Scholar
  24. Lai FA, Dent M, Wickenden C, Xu L, Kumari G, Misra M, Lee HB, Sar M, Meissner G (1992) Expression of a cardiac Ca2+-ATPase channel isoform in mammalian brain. Biochem J 288:553–564CrossRefGoogle Scholar
  25. Leidenheimer NJ, Browning MD, Harris RA (1991) GABAA receptor phosphorylation: multiple sites, actions and artifacts. Trends Pharmacol Sci 12:84–87CrossRefGoogle Scholar
  26. Lewis DA, Lund JS (1990) Heterogeneity of chandelier neurons in monkey neocortex: corticotropin-releasing factor- and parval- bumin-immunoreactive populations. J Comp Neurol 293:599–615CrossRefGoogle Scholar
  27. Linden DJ, Routtenberg A (1989) The role of protein kinase C in long-term potentiation: a testable model. Brain Res Rev 14:279–296CrossRefGoogle Scholar
  28. Llano I, Leresche N, Marty A (1991) Calcium entry increases the sensitivity of cerebellar Purkinje cells to applied GABA and decreases inhibitory synaptic currents. Neuron 6:565–574CrossRefGoogle Scholar
  29. Maeda N, Niinobe M, Inoue Y, Mikoshiba K (1989) Developmental expression and intracellular location of P400 protein, characteristic of Purkinje cells in the mouse cerebellum. Dev Biol 133:67–76CrossRefGoogle Scholar
  30. Maggio K, Watrin A, Keicher E, Nicaise G, Hernandez-Nicaise M-L (1991) Ca2+-ATPase and Mg2+-ATPase in Aplysia glial and interstitial cells: an EM cytochemical study. J Histochem Cytochem 39:1645–1658CrossRefGoogle Scholar
  31. Mata M, Fink DJ (1989) Ca++-ATPase in the central nervous system: an EM cytochemical study. J Histochem Cytochem 37:971–980CrossRefGoogle Scholar
  32. Maxwell WL, Watt C, Pediani JD, Graham DI, Adams JH, Gennarelli TA (1991) Localisation of calcium ions and calcium-ATPase activity within myelinated nerve fibres of the adult guinea-pig optic nerve. J Anat 176:71–79PubMedPubMedCentralGoogle Scholar
  33. McPherson PS, Campbell KP (1993) The ryanodine receptor/Ca2+ release channel. J Biol Chem 268:13765–13768PubMedGoogle Scholar
  34. Mignery GA, Sudhof TC, Takei K, De Camilli P (1989) Putative receptor for inositol 1,4,5-trisphosphate similar to ryanodine receptor. Nature 342:192–195CrossRefGoogle Scholar
  35. Molnár E, Seidler NW, Jona I, Martonosi AN (1990) The binding of monoclonal and polyclonal antibodies to the Ca2+-ATPase of sarcoplasmic reticulum: effects on interactions between ATPase molecules. Biochem Biophys Acta 1023:147–167CrossRefGoogle Scholar
  36. Molnár E, Varga S, Jóna I, Seidler NW, Martonosi A (1992) Immunological relatedness of the sarcoplasmic reticulum Ca2+-ATPase and the Na+, K+-ATPase. Biochem Biophys Acta 1103:281–295CrossRefGoogle Scholar
  37. Molnár E, Baude A, Richmond SA, Patel PB, Somogyi P, McIlhinney RAJ (1993) Biochemical and immunocytochemical characterization of antipeptide antibodies to a cloned GluR1 glutamate receptor subunit: cellular and subcellular distribution in the rat forebrain. Neuroscience 53:307–326CrossRefGoogle Scholar
  38. Nakanishi S, Kuwajima G, Mikoshiba K (1992) Immunohisto-chemical localisation of ryanodine receptors in mouse central nervous system. Neurosci Res 15:130–142CrossRefGoogle Scholar
  39. Nasu F, Inomata K (1990) Ultracytochemical demonstration of Ca2+-ATPase activity in the rat saphenous artery and its innervated nerve terminal. J Electron Microsc (Tokyo) 39:487–491Google Scholar
  40. Numann R, Catterall WA, Scheuer T (1991) Functional modulation of brain sodium channels by protein kinase C phosphorylation. Science 254:115–118CrossRefGoogle Scholar
  41. Padua RA, Yamamoto T, Fyda D, Sawchuk MA, Geiger JD, Nagy JI (1992) Autoradiographic analysis of [3H]ryanodine binding sites in rat brain: regional distribution and the effects of lesions on sites in the hippocampus. J Chem Neuroanat 5:63–73CrossRefGoogle Scholar
  42. Palay SL, Sotelo C, Peters A, Orkand PM (1968) The axon hillock and the initial segment. J Cell Biol 38:193–201CrossRefGoogle Scholar
  43. Peters A, Proskauer CC, Kaiserman-Abramof IR (1968) The small pyramidal neuron of the rat cerebral cortex. The axon hillock and initial segment. J Cell Biol 39:604–619CrossRefGoogle Scholar
  44. Peters A, Palay SL, Webster H (1991) The fine structure of the nervous system, 3rd edn. Oxford University Press, New YorkGoogle Scholar
  45. Pitler TA, Alger BE (1992) Postsynaptic spike firing reduces synaptic GABAA responses in hippocampal pyramidal cells. J Neurosci 12:4122–4132CrossRefGoogle Scholar
  46. Plessers L, Eggermont JA, Wuytack F, Casteels R (1991) A study of the organellar Ca2+-transport ATPase isozymes in pig cerebellar Purkinje cells. J Neurosci 11:650–656CrossRefGoogle Scholar
  47. Raymond LA, Blackstone CD, Huganir RL (1993) Phosphorylation of amino acid neurotransmitter receptors in synaptic plasticity. Trends Neurosci 16:147–153CrossRefGoogle Scholar
  48. Rosenbluth J (1962) Subsurface cisterns and their relationship to the neuronal plasma membrane. J Cell Biol 13:405–421CrossRefGoogle Scholar
  49. Ross CA, Meldolesi J, Milner TA, Satoh T, Supattapone S, Snyder SH (1989) Inositol 1,4,5-trisphosphate receptor localized to endoplasmic reticulum in cerebellar Purkinje neurons. Nature 339:468–470CrossRefGoogle Scholar
  50. Rossier MF, Putney JW (1991) The identity of the calcium-storing, inositol 1,4,5-trisphosphate-sensitive organelle in non-muscle cells: calciosome, endoplasmic reticulum or both? Trends Neurosci 14:310–314CrossRefGoogle Scholar
  51. Rusakov DA, Podini P, Villa A, Meldolesi J (1993) Tridimensional organization of Purkinje neuron cisternal stacks, a specialized endoplasmic reticulum subcompartment rich in inositol 1,4,5- trisphosphate receptors. J Neurocytol 22:273–282CrossRefGoogle Scholar
  52. Saito A, Inui M, Radermacher M, Frank J, Fleischer S (1988) Ultrastructure of the calcium release channel of sarcoplasmic reticulum. J Cell Biol 107:211–219CrossRefGoogle Scholar
  53. Sarkadi B, Enyedi A, Penniston JT, Verma AK, Dux L, Molnár E, Gardos G (1988) Characterization of membrane calcium pumps by simultaneous immunoblotting and 32P radiography. Biochem Biophys Acta 939:40–46CrossRefGoogle Scholar
  54. Satoh T, Ross CA, Villa A, Supattapone S, Pozzan T, Snyder SH, Meldolesi J (1990) The inositol 1,4,5-trisphosphate receptor in cerebellar Purkinje cells: quantitative immunogold labeling reveals concentration in an ER subcompartment. J Cell Biol 111:615–624CrossRefGoogle Scholar
  55. Sharp AH, McPherson PS, Dawson TM, Aoki C, Campbell KP, Snyder SH (1993) Differential immunohistochemical localization of inositol 1,4,5-trisphosphate- and ryanodine-sensitive Ca2+ release channels in rat brain. J Neurosci 13:3051–3063CrossRefGoogle Scholar
  56. Sloper JJ, Powell TPS (1979) A study of the axon initial segment and proximal axon of neurons in the primate motor and somatic sensory cortices. Phil Trans R Soc Lond B 285:173–197CrossRefGoogle Scholar
  57. Soji T, Nishizono H, Yashiro T, Herbert DC (1991) Cytochemistry of Ca2+-dependent adenosine triphosphatase (Ca-ATPase) in rat anterior pituitary cells. Tissue Cell 23:1–6CrossRefGoogle Scholar
  58. Somogyi P (1977) A specific ‘axo-axonal’ interneuron in the visual cortex of the rat. Brain Res 136:345–350CrossRefGoogle Scholar
  59. Somogyi P, Hamori J (1976) A quantitative electron microscopic study of the Purkinje cell axon initial segment. Neuroscience 1:361–366CrossRefGoogle Scholar
  60. Somogyi P, Cowey A (1981) Combined Golgi and electron microscopic study on the synapses formed by double bouquet cells in the visual cortex of the cat and monkey. J Comp Neurol 195:547–566CrossRefGoogle Scholar
  61. Somogyi P, Takagi H (1982) A note on the use of picric acid- paraformaldehyde-glutaraldehyde fixative for correlated light and electron microscopic immunocytochemistry. Neuroscience 7:1779–1783CrossRefGoogle Scholar
  62. Somogyi P, Nunzi MG, Gorio A, Smith AD (1983a) A new type of specific interneuron in the monkey hippocampus forming synapses exclusively with the axon initial segments of pyramidal cells. Brain Res 259:137–142CrossRefGoogle Scholar
  63. Somogyi P, Smith AD, Nunzi MG, Gorio A, Takagi H, Wu J-Y (1983b) Glutamate decarboxylase immunoreactivity in the hippocampus of the cat. Distribution of immunoreactive synaptic terminals with special reference to the axon initial segment of pyramidal neurons. J Neurosci 3:1450–1468CrossRefGoogle Scholar
  64. Somogyi P, Freund TF, Hodgson AJ, Somogyi J, Beroukas D, Chubb IW (1985) Identified axo-axonic cells are immunoreactive for GABA in the hippocampus and visual cortex of the cat. Brain Res 332:143–149CrossRefGoogle Scholar
  65. Stelzer A (1992) Intracellular regulation of GABAA-receptor function. In: Narahashi T (ed) Ion Channels, vol 3. Plenum Press, New York, pp 83–136CrossRefGoogle Scholar
  66. Stuart GJ, Sakmann B (1994) Active propagation of somatic action potentials into neocortical pyramidal cell dendrites. Nature 367:69–72CrossRefGoogle Scholar
  67. Takei K, Stukenbrok H, Metcalf A, Mignery GA, Sudhof TC, Volpe P, De Camilli P (1992) Ca2+ Stores in Purkinje neurons: endoplasmic reticulum subcompartments demonstrated by the heterogenous distribution of the InsP3 receptor, Ca2+- ATPase, and calsequestrin. J Neurosci 12:489–505CrossRefGoogle Scholar
  68. Takeshima H, Nishimura S, Matsumoto T, Ishida H, Kangawa K, Minamino N, Matsuo H, Ueda M, Hanaoka M, Hirose T, Numa S (1989) Primary structure and expression from complementary DNA of skeletal muscle ryanodine receptor. Nature 339:439–445CrossRefGoogle Scholar
  69. Theibert AB, Supattapone S, Worley PF, Baraban JM, Meek JL, Snyder SH (1987) Demonstration of inositol 1,3,4,5-tetrakisphosphate receptor binding. Biochem Biophys Res Commun 148:1283–1289CrossRefGoogle Scholar
  70. Treves S, De Mattei M, Landfredi M, Villa A, Green NM, MacLennan DH, Meldolesi J, Pozzan T (1990) Calreticulin is a candidate for a calsequestrin-like function in Ca2+ storage compartments (calciosomes) of liver and brain. Biochem J 271:473–480CrossRefGoogle Scholar
  71. Tsunoda Y (1993) Receptor-operated Ca2+ signaling and crosstalk in stimulus secretion coupling. Biochem Biophys Acta 1154:105–156PubMedGoogle Scholar
  72. Volpe P, Krause K-H, Hashimoto S, Zorzato F, Pozzan T, Meldolesi J, Lew DP (1988) ‘Calciosome,’ a cytoplasmic organelle: The inositol 1,4,5-trisphosphate-sensitive Ca2+ store of non-muscle cells? Proc Natl Acad Sci USA 85:1091–1095CrossRefGoogle Scholar
  73. Westrum LE (1993) Axon hillocks and initial segments in spinal trigeminal nucleus with emphasis on synapses including axo-axo-axonic contacts. J Neurocytol 22:793–803CrossRefGoogle Scholar
  74. Whiting P, McKernan RM, Iversen LL (1990) Another mechanism for creating diversity in γ-aminobutyrate type A receptors: RNA splicing directs expression of two forms of γ2 sub-unit, one of which contains a protein kinase C phosphorylation site. Proc Natl Acad Sci USA 87:9966–9970CrossRefGoogle Scholar
  75. Yamamoto T, Hertzberg EL, Nagy JI (1990) Epitopes of gap junctional proteins localized to neuronal subsurface cisterns. Brain Res 527:135–139CrossRefGoogle Scholar
  76. Yamamoto T, Hertzberg EL, Nagy JI (1991) Subsurface cisterns in α-motoneurons of the rat and cat: immunohistochemical detection with antibodies against connexin 32. Synapse 8:119–136CrossRefGoogle Scholar

Copyright information

© Springer-Verlag 1994

Authors and Affiliations

  • Istvan Benedeczky
    • 1
  • Elek Molnár
    • 1
  • Péter Somogyi
    • 1
  1. 1.Medical Research Council, Anatomical Neuropharmacology UnitOxford UniversityOxfordUK

Personalised recommendations