Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Relationship between Ca2+-transport and ATP hydrolytic activities in guinea-pig pancreatic acinar plasma membranes

  • 13 Accesses

Abstract

Partially purified plasma membrane fractions were prepared from guinea-pig pancreatic acini. These membrane preparations were found to contain an ATP-dependent Ca2+-transporter as well as a heterogenous ATP-hydrolytic activity. The Ca2+-transporter showed high affinity for Ca2+ (KCa 2+ = 0.04 ± 0.01 μM), an apparent requirement for Mg2+ and high substrate specificity. The major component of ATPase activity could be stimulated by either Ca2+ or Mg2+ but showed a low affinity for these cations. At low concentrations, Mg2+ appeared to inhibit the Ca2+-dependent ATPase activity expressed by these membranes. However, in the presence of high Mg2+ concentration (0.5–1 mM), a high affinity Ca2+-dependent ATPase activity was observed (KCa 2+ = 0.08 ± 0.02 μM). The hydrolytic activity showed little specificity towards ATP. Neither the Ca2+-transport nor high affinity Ca2+-ATPase activity were stimulated by calmodulin. The results demonstrate, in addition to a low affinity Ca2+ (or Mg+)-ATPase activity, the presence of both a high affinity Ca2+-pump and high affinity Ca2+-dependent ATPase. However, the high affinity Ca2+-ATPase activity does not appear to be the biochemical expression of the Ca2+-pump.

This is a preview of subscription content, log in to check access.

Abbreviations

Ca2+-ATPase:

calcium-activated, magnesium-dependent adenosine triphosphatase

CaM:

calmodulin

CDTA:

trans-1,2-diaminocyclohexane-N,N,N′,N′-tetraacetate

EDTA:

ethylene-diaminetetraacetate

EGTA:

ethylene glycol bis(β-aminoethyl ether)-N,N,N′,N′-tetraacetate

NADPH:

reduced form of nicotinamide adenine dinucleotide phosphate

References

  1. 1.

    Schulz I: Messenger role of calcium in function of pancreatic acinar cells. Am J Physiol 239: G335-G347, 1980

  2. 2.

    Schulz I, Stolze HH: The exocrine pancreas: The role of secretagogues, cyclic nucleotides, and calcium in enzyme secretion. Ann Rev Physiol 42: 127–156, 1980

  3. 3.

    Williams JA: Regulation of pancreatic acinar cell function by intracellular calcium. Am J Physiol 238: G269-G279, 1980

  4. 4.

    Sung CK, Williams JA: Role of calcium in pancreatic acinar cell secretion. Miner Electrolyte Metab 14: 71–77, 1988

  5. 5.

    Muallem S, Becker TG, Fimmel CJ: Activation of the endoplasmic reticulum Ca2+ pump of pancreatic acini by Ca2+ mobilizing hormones. Biochem Biophys Res Commun 149: 213–220, 1987

  6. 6.

    Schulz I, Streb H, Bayerdörffer E, Imamura K: Intracellular messengers in stimulus-secretion coupling of pancreatic acinar cells. J Cardiovasc Pharmacol 8 (Suppl. 8): S91-S96, 1986

  7. 7.

    Bayerdörffer E, Haase W, Schulz I: Na+/Ca2+ counter-transport in plasma membrane of rat pancreatic acinar cells. J Membr Biol 87: 107–119, 1985

  8. 8.

    Bayerdörffer E, Eckhardt L, Haase W, Schulz I: Electrogenic calcium transport in plasma membrane of rat pancreatic acinar cells. J Membr Biol 84: 45–60, 1985

  9. 9.

    Kribben A, Tyrakowski T, Schulz I: Characterization of Mg-ATP-dependent Ca2+ transport in cat pancreatic microsomes. Am J Physiol 244: G480-G490, 1983

  10. 10.

    Ansah T-A, Molla A, Katz S: Ca2+-ATPase activity in pancreatic acinar plasma membranes. Regulation by calmodulin and acidic phospholipids. J Biol Chem 259: 13442–13450, 1984

  11. 11.

    Schatzmann HJ: The plasma membrane calcium pump. In: H Bader, K Gietzen, J Rosenthal, R Rildel, HU Wolf (eds.) Intracellular Calcium Regulation. Manchester University Press, Manchester, 1986, pp 47–56

  12. 12.

    Carafoli E, Zurini M, Benaim G: The calcium pump of plasma membrane. In: Calcium and the Cell. Wiley, Chichester, 1986, pp 58–72

  13. 13.

    Caroni P, Carafoli E: The Ca2+-pumping ATPase of heart sarcolemma. Characterization, calmodulin dependence, and partial purification. J Biol Chem 256: 3263–3270, 1981

  14. 14.

    Caroni P, Zurini M, Clark A, Carafoli E: Further characterization and reconstitution of the purified Ca2+-pumping ATPase of heart sarcolemma. J Biol Chem 258: 7305–7310, 1983

  15. 15.

    Niggli V, Adunyah ES, Carafoli E: Acid phospholipids in saturated fatty acids and limited proteolysis mimic the effect of calmodulin on the purified erythrocyte Ca2+-ATPase. J Biol Chem 256: 8588–8592, 1981

  16. 16.

    Schatzmann HJ, Luterbacher S, Stieger J, Wüthrich A: Red blood cell calcium pump and its inhibition by vanadate and lanthanum. J Cardiovasc Pharmacol 8 (Suppl 8): S33-S37, 1986

  17. 17.

    Ronner P, Gazzotti P, Carafoli E: A lipid requirement for the (Ca2+ + Mg2+)-activated ATPase of erythrocyte membranes. Arch Biochem Biophys 179: 578–583, 1977

  18. 18.

    Forget G, Heisler S: Calcium-activated ATPase activity in a plasma membrane rich preparation of rat pancreas. Clin Exp Pharmacol Physiol 3: 67–72, 1976

  19. 19.

    LeBel D, Poirier GG, Phaneuf S, St.-Jean P, Laliberté JF, Beaudoin AR: Characterization and purification of a calcium-sensitive ATP diphosphohydrolase from pig pancreas. J Biol Chem 255: 1227–1233, 1980

  20. 20.

    Martin SS, Senior AE: Membrane adenosine triphosphatase activities in rat pancreas. Biochim Biophys Acta 602: 401–418, 1980

  21. 21.

    Williams JA, Korc M, Dormer RL: Action of secretagogues on a new preparation of functionally intact, isolated pancreatic acini. Am J Physiol 235: E517-E524, 1978

  22. 22.

    Svoboda M, Robberecht P, Camus J, Deschodt-Lanckman M, Christophe J: Subcellular distribution and response to gastrointestinal hormones of adenylate cyclase in the rat pancreas. Partial purification of a stable plasma membrane preparation. Eur J Biochem 69: 185–193, 1976

  23. 23.

    Lowry OH, Rosebrough NJ, Farr AL, Randall RJ: Protein measurement with the folin phenol reagent. J Biol Chem 193: 265–275, 1951

  24. 24.

    Goldstein D: Calculation of the concentration of the free cations and cation-ligand complexes in solutions containing multiple divalent-cations and ligands. Biophys J 26: 235–242, 1979

  25. 25.

    Martell A, Smith R: Critical Stability Constants (ed. 1, New York). Plenum Press, New York, 1974, p

  26. 26.

    Martell A, Smith R: Critical Stability Constants (ed. 5, New York). Plenum Press, New York, 1982, p

  27. 27.

    Blostein R: Relationship between erythrocyte membrane phosphorylation and adenosine triphosphate hydrolysis. J Biol Chem 243: 1957–1965, 1968

  28. 28.

    Raess BU, Vincenzi FF: A semi-automated method for the determination of multiple membrane ATPase activities. J Pharmacol Methods 4: 273–283, 1980

  29. 29.

    Verma AK, Penniston JT: A high affinity Ca2+-stimulated and Mg2+-dependent ATPase in rat corpus luteum plasma membrane fractions. J Biol Chem 256: 1269–1275, 1981

  30. 30.

    Pandol SJ, Schoeffield MS, Sachs G, Muallem S: The role of free cytosolic calcium in secretagogues stimulated amylase release from dispersed acini from guinea pig pancreas. J Biol Chem 260: 10081–10086, 1985

  31. 31.

    Muallem S, Pandol SJ, Beeker TG: Calcium mobilizing hormones activate the plasma membrane Ca2+ pump of pancreatic acinar cells. J Membr Biol 106: 57–69, 1988

  32. 32.

    Galvan A, Lucas M: Ionic and substrate requirements of the high affinity calcium pumping ATPase in endoplasmic reticulum of pancreas. Int J Biochem 19: 987–993, 1987

  33. 33.

    Lotersztajn S, Hanoune J, Pecker F: A high affinity calcium-stimulated magnesium-dependent ATPase in rat liver plasma membranes. Dependence on an endogenous protein activator distinct from calmodulin. J Biol Chem 256: 11209–11215, 1981

  34. 34.

    Pershadsingh HA, McDonald JM: A high affinity calcium-stimulated magnesium-dependent adenosine triphosphatase in rat adipocyte plasma membranes. J Biol Chem 255: 4087–4093, 1980

  35. 35.

    Lambert M, Christophe J: Characterization of (Mg, Ca)-ATPase activity in rat pancreatic plasma membranes. Eur J Biochem 91: 485–492, 1978

  36. 36.

    Lin S-H, Fain JN: Purification of (Ca2+-Mg2+)-ATPase from rat liver plasma membranes. J Biol Chem 259: 3016–3020, 1984

  37. 37.

    Minami J, Penniston JT: Ca2+ uptake by corpus-luteum plasma membranes. Evidence of both a Ca2+-pumping ATPase and a Ca2+-dependent nucleoside triphosphatase. Biochem J 242: 889–894, 1987

  38. 38.

    Anand-Srivastava MB, Panagia V, Dhalla NS: Properties of Ca2+ or Mg2+ dependent ATPase in rat heart sarcolemma. Adv Myocardiol 3: 359–371, 1982

  39. 39.

    Zhao D, Dhalla NS: Characterization of rat heart plasma membrane Ca2+/Mg2+ ATPase. Arch Biochem Biophys 263: 281–292, 1988

  40. 40.

    Murray E, Gorsky JP, Penniston JT: High-affinity Ca2+-stimulated and Mg2+-dependent ATPase from rat osteosarcoma. Biochem Int 6: 527–533, 1983

  41. 41.

    Parkinson DK, Redde IC: Properties of a Ca2+- and Mg2+-activated ATP-hydrolyzing enzyme in kidney cortex. Biochim Biophys Acta 242: 238–246, 1971

  42. 42.

    Hamlyn JM, Senior AE: Evidence that Mg2+- or Ca2+-activated adenosine triphosphatase in rat pancreas is a plasma-membrane ecto-enzyme. Biochem J 214: 59–68, 1983

  43. 43.

    Lin S-H, Russell WE: Two Ca2+-dependent ATPases in rat liver plasma membrane. The previously purified (Ca2+-Mg2+)-ATPase is not a Ca2+-pump but an ecto-ATPase. J Biol Chem 263: 12253–12258, 1988

  44. 44.

    Tuana BS, Dhalla NS: Purification and characterization of a Ca2+/Mg2+ ecto-ATPase from rat heart sarcolemma. Mol Cell Biochem 81: 75–88, 1988

  45. 45.

    Gazzotti P, Flura M, Gloor M: The association of calmodulin with subcellular fractions isolated from rat liver. Biochem Biophys Res Commun 127: 358–365, 1985

  46. 46.

    Pavoine C, Lotersztajn S, Mallat A, Pecker F: The high affinity (Ca2+-Mg2+)-ATPase in liver plasma membrane is a Ca2+ pump. Reconstitution of the purified enzyme into phospholid vesicles. J Biol Chem 262: 5113–5117, 1987

  47. 47.

    Lin S-H: The rat liver plasma membrane high affinity (Ca2+-Mg2+)-ATPase is not a calcium pump. Comparison with ATP-dependent calcium transporter. J Biol Chem 260: 10976–10980, 1985

Download references

Author information

Correspondence to Sidney Katz.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mahey, R., Bridges, M.A. & Katz, S. Relationship between Ca2+-transport and ATP hydrolytic activities in guinea-pig pancreatic acinar plasma membranes. Mol Cell Biochem 105, 137–147 (1991). https://doi.org/10.1007/BF00227753

Download citation

Key words

  • Ca2+-pump
  • Ca2+-ATPase
  • high affinity
  • Mg2+-dependent
  • substrate specificity