Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Magnetopause stability threshold for patchy reconnection

  • 124 Accesses

  • 139 Citations

Abstract

This review is devoted to the problem of the internal fine structure of the Earth's magnetopause. A number of theoretical and experimental papers dealing with this subject is discussed from a unified viewpoint. The Vlasov kinetic approach is used to study the stability of magnetopause magnetic surfaces that can be destructed by the growth and overlapping of magnetic islands. The stochastic wandering of magnetic field lines between the destructed surfaces can result in magnetic percolation, i.e. the appearance of a topological connection of interplanetary and geomagnetic field lines. Such a process may be considered as a mechanism of the macroscopic (but spatially localized) reconnection. We discuss this in relation with the phenomena of spontaneous ‘patchy’ reconnection, recently observed at ISEE satellites and now known as flux transfer events.

Drift tearing mode, which is responsible for the growth of magnetic islands can be stabilized due to its coupling with ion sound waves, and the process of percolation will be interrupted if even a thin region with smooth stable magnetic surfaces exists within the magnetopause. Accordingly, we obtain a magnetopause stability threshold for localized reconnection. It is represented in the form of dependence of marginal dimensionless thickness of the magnetopause on the angle of magnetic field rotation within it.

Further, we discuss the possible role of lower hybrid turbulence permanently observed within the. magnetopause and speeding up the process of reconnection. Nonlinear calculations supporting the developed model are given in the appendices. We consider briefly the motion of reconnecting flux tubes and evaluate the time necessary for the accomplishment of percolation. The calculations show that the appearance of reconnection ‘patchies’ at the dayside magnetopause cannot occur too far from the stagnation region. The latter agrees with experimental indications on the most probable site of the formation of flux transfer events. In the concluding part of the review we discuss the necessary limitations on the theory, possible lines of its future advance and comparison with the experimental data.

This is a preview of subscription content, log in to check access.

References

  1. Anderson, R. R., Harvey, C. C., Hoppe, M. M., Tsuturani, B. T., Eastman, T. E., and Etcheto, J.: 1982, ‘Plasma Waves Near the Magnetopause’, J. Geophys. Res. 87, 2087.

  2. Berchem, J. and Russell, C. T.: 1982a, ‘The Thickness of the Magnetopause Current Layer: ISEE 1 and 2 Observations’, J. Geophys. Res. 87, 2108.

  3. Berchem, J. and Russell, C. T.: 1982b, ‘Magnetic Field Rotation Through the Magnetopause: ISEE 1 and 2 Observations’, J. Geophys. Res. 87, 8139.

  4. Berchem, J. and Russell, C. T.: 1984, ‘Flux Transfer Events on the Magnetopause. Spatial Distributions and Controlling Factors’, J. Geophys. Res. 89, 6689.

  5. Biscamp, D.: 1977, Nonlinear Development of Tearing Modes in Hot Plasma, Max-Planck Institut für Plasma Physik, preprint.

  6. Bolshakova, O. V. and Troitskaya, V. A.: 1982, ‘Impulsive Reconnection as a Possible Source of ipcl Pulsations’, Geomagnetizm i Aeronomiya 22, 877.

  7. Bulanov, S. V. and Sasorov, P. V.: 1978, ‘Stabilization of the Tearing Mode in Stationary Plasma Flow’, Pisma Zh. Eksp. Teor. Fiz. 27, 554.

  8. Bussac, M. N., Edery, D., Pellat, R., and Soule, J. L.: 1978, ‘Stabilization of the Linear Drift Tearing Modes by the Coupling with Ion Sound Wave’, Phys. Rev. Letters 40, 1500.

  9. Bythrow, P. F., Burke, W. J., Potemra, T. A., Zanetti, L. J., and Lui, A. T. Y.: 1985, ‘Ionospheric Evidence of Irregular Reconnection and Turbulent Plasma Flows in the Magnetotail during Periods of Nothward Interplanetary Magnetic Field’, J. Geophys. Res. 90, 5319.

  10. Cambou, F. and Galperin, Y. I.: 1974, ‘Resultants d'Ensemble Obtenus Grace a l'Experience ARCAD’, Ann. de Geophysiq. 30, 9.

  11. Coppi, B., Laval, G., Pellat, R.: 1966, ‘Dynamics of the Geomagnetic Tail’, Phys. Rev. Letters 16, 1207.

  12. Coppi, B., Mark, J. W.-K., Sugiyama, L., and Bertin, G.: 1979, ‘Reconnecting Modes in Collisionless Plasma’, Phys. Rev. Letters 42, 1058.

  13. Coroniti, F. V. and Quest, K. B.: 1984, ‘Nonlinear Evolution of Magnetopause Tearing Modes’, J. Geophys. Res. 89, 137.

  14. Cowley, S. W. H.: 1982, ‘The Causes of Convection in the Earth's Magnetosphere: A Review of Developments During the IMS’, Rev. Geophys. Space Phys. 20, 531.

  15. Crew, G. B., Antonsen, T. M. Jr., and Coppi, B.: 1982, ‘Integral Formulation of Collisionless Reconnecting Modes’, Nucl. Fusion 22, 41.

  16. Crooker, N. U., Siscoe, G. L., Eastman, T. E., Frank, L. A., and Zwickl, R. D.: 1984, ‘Large-Scale Flow in the Dayside Magnetosheath’, J. Geophys. Res. 89, 9711.

  17. Daly, P. W., Saunders, M. A., Rijnbeek, R. P., Schopke, N., and Russell, C. T.: 1984, ‘The Distribution of Reconnection Geometry in Flux Transfer Events Using Energetic Ion, Plasma, and Magnetic Data’, J. Geophys. Res. 89, 3843.

  18. Dendy, R. O. and Ter Haar, D.: 1984, ‘Fast Time-Scale Plasma Turbulence and the Collisionless Tearing Mode’, Monthly Notices Roy. Astron. Soc. 209, 335.

  19. Drake, J. F. and Lee, Y. C.: 1977a, ‘Kinetic Theory of Tearing Instabilities’, Phys. Fluids 20, 1341.

  20. Drake, J. F. and Lee, Y. C.: 1977b, ‘Nonlinear Evolution of Collisionless and Semi-Collisional Tearing Modes’, Phys. Rev. Letters 39, 453.

  21. Drake, J. F., Antonsen, T. M., Jr., Hassam, A. B., and Gladd, N. T.: 1983, ‘Stabilization of the Tearing Modes in High-Temperature Plasma’, Phys. Fluids 26, 2509.

  22. Dubinin, E. M., Podgorny, I. M., and Potanin, Yu. N.: 1980, ‘On Magnetic Field Structure on the Magnetosphere Boundary’, Kosm. Issledovaniia 18, 99.

  23. Dungey, J. W.: 1961, ‘Interplanetary Magnetic Field and Auroral Zone’, Phys. Rev. Letters 6, 47.

  24. Eastman, T. E. and Frank, L. A.: 1982, ‘Observation of High Speed Plasma Flow Near the Earth's Magnetopause. Evidence for Reconnection’, J. Geophys. Res. 87, 2187.

  25. Elphic, R. C. and Russell, C. T.: 1979, ‘ISEE 1 and 2 Magnetomaeter Observations of the Magnetopause’, Magnetospheric Boundary Layers, Proceedings of a Sydney Chapman Conference, Alpbach, 11–15 June, ESA Publication, p. 43.

  26. Farengo, R., Lee, Y. C., and Guzdar, P. N.: 1983, ‘An Electromagnetic Integral Equation. Application to Microtearing Modes’, Phys. Fluids 26, 3515.

  27. Fu, Z. F. and Lee, L. C.: 1985, ‘Simulation of Multiple X-line Reconnection at the Dayside Magnetopause’, Geophys. Res. Letters 12, 291.

  28. Galeev, A. A.: 1963, ‘About one Asymptotic Method in the Theory of Plasma Stability’, Soviet Phys. Dokl. 150, 503.

  29. Galeev, A.A.: 1982, in A. Nishida (ed.), ‘Magnetospheric Tail Dynamics’, Magnetospheric Plasma Physics, D. Reidel Publ. Co. and Center for Academic Publications, Japan, 1982, p. 143.

  30. Galeev, A. A.: 1983, ‘Plasma Processes Within the Magnetosphere Boundaries’, Space Sci. Rev. 34, 213.

  31. Galeev, A. A.: 1984, in A. A. Galeev and R. N. Sudan (eds.), ‘Spontaneous Reconnection of Magnetic Field Lines in a Collisionless Plasma’, Basic Plasma Physics, Vol. 2, North-Holland, Amsterdam, p. 305.

  32. Galeev, A. A. and Zeleny, L. M.: 1975, ‘Metastable States of Diffusive Neutral Sheet and Explosive Phase of Substorm’, JETP Letters 22, 170.

  33. Galeev, A. A. and Zeleny, L. M.: 1977, ‘The Model of Magnetic Field Reconnection in a Slab Collisionless Plasma Sheath’, Pisma Zh. Eksp. Teor. Fiz. 25, 407.

  34. Galeev, A. A. and Zeleny, L. M.: 1978, ‘Magnetic Reconnection in a Space Plasma’, Theoretical and Computational Plasma Physics, IAEA, Vienna, 1978, p. 93.

  35. Galeev, A. A. and Zeleny, L. M.: 1982, Interaction of Magnetic Fields at the Boundary of the Earth's Magnetosphere’, Dynamics of the Current Layers and the Physics of the Solar Activity, Riga, Zinatne, p. 65 (in Russian).

  36. Galeev, A. A., Coroniti, F.V., and Ashour-Abdalla, M.: 1978, ‘Explosive Tearing-Mode Reconnection in Magnetospheric Tail’, Geophys. Res. Lett. 5, 707.

  37. Galeev, A. A., Zeleny, L. M., and Kuznetsova, M. M.: 1985, ‘Nonlinear Drift Tearing Mode’, Pisma Zh. Eksp. Teor. Fiz. 41, 316.

  38. Gary, S. P. and Eastman, T. E.: 1979, ‘The Lower Hybrid Drift Instability at the Magnetopause’, J. Geophys. Res. 84, 7378.

  39. Greenly, J. B. and Sonnerup, B. U. O.: ‘Tearing Modes at the Magnetopause’, J. Geophys. Res. 86, 1305.

  40. Guan, Jing, Yin, Run-jie, Zhao, Kai-hua, and Tu, Chuan-yi: 1984, ‘Simplified Model of the Magnetopause and the Lower-Hybrid Drift Instability’, Chin. J. Space Sci. 4, 112.

  41. Haerendel, G., Paschmann, G., Schopke, N., Rosenbauer, H., and Hedgecock, P. G.: 1978, The Frontside Boundary Layer of the Magnetosphere and the Problem of Reconnection’, J. Geophys. Res. 83, 3195.

  42. Harris, E. G.: 1962, ‘On a Plasma Sheath Separating Regions of Oppositely Directed Magnetic Field’, Nuovo Cimento 23, 115.

  43. Huba, J. D. and Papadopoulos, K.: 1978, ‘Nonlinear Stabilization of the Lower-Hybrid Drift Instability by Electron Resonance Broadening’, Phys. Fluids 21, 121.

  44. Huba, J. D., Gladd, N. T., and Papadopoulos, K.: 1977, The Lower-Hybrid Drift Instability as a Source of Anomalous Resistivity for Magnetic Field Line Reconnection’, Geophys. Res. Letters 4, 125.

  45. Kadomtsev, B. B.: 1975, ‘On Disruptive Instability in Tokamak’, Fiz. Plazmy 1, 710.

  46. Kan, J. R.: 1972, ‘Equilibrium Configuration of Vlasov Plasma Carrying a Current Along an External Magnetic Field’, J. Plasma Phys. 7, 445.

  47. Kleymenova, N. G., Bolshakova, O. V., Troitskaya, V. A., and Friis-Kristen, E.: 1985, ‘Two Kinds of Long Period Geomagnetic Pulsations Near the Equatorial Boundary of Day Polar Cusp’, Geomagnetizm i Aeronomiya 25, 163.

  48. Kuznetsova, M. M. and Zeleny, L. M.: 1985, ‘Structure and Stability of Perturbations of Magnetic Surfaces in Transitional Layers’, Plasma Physics Contr. Fusion 27, 363.

  49. Lakhina, G. S. and Schindler, K.: 1983, ‘Collisionless Tearing-Mode in the Presence of Shear Flow’, Astrophys. Space Sci. 89, 293.

  50. Lavai, G., Pellat, R., and Vuillemin, M.: 1966, ‘Instabilities Electromagnétiques des plasmas sans collisions’, Plasma Phys. Contr. Fusion Res., Vol. 2, IAEA, Vienna, p. 259.

  51. Lee, L. C.: 1985, ‘Magnetic Flux Transfer at the Earth's Magnetopause’, Proceedings of Chapman Conference on Solar Wind-Magnetosphere Coupling (to appear).

  52. Lee, L. C. and Fu, Z. F.: 1985, ‘A Theory of Magnetic Flux Transfer at the Earth's Magnetopause’, Geophys. Res Letters 12, 105.

  53. Lee, L. C. and Kan, J. R.: 1982, ‘Structure of the Magnetopause Rotational Discontinuity’, J. Geophys. Res. 87, 139.

  54. Lemaire, J.: 1977, ‘Impulsive Penetration of Filamentary Plasma Elements Into the Magnetospheres of the Earth and Jupiter’, Planetary Space Sci. 25, 887.

  55. Levy, R. H., Petschek, H. E., and Siscoe, G. L.: 1964, ‘Aerodynamic Aspects of the Magnetospheric Flow’, AIAA J., Vol. 2, 2065.

  56. Luhmann, J. G., Walker, R. J., Russell, C. T., Spreiter, J. R., Stahara, S. S., and Williams, D. J.: 1984, ‘Mapping the Magnetosheath Field Between the Magnetopause and the Bow Shock: Implications for Magnetospheric Particle Leakage’, J. Geophys. Res. 89, 6829.

  57. Paschmann, G., Haerendel, G., Papamastorakis, I., and Schopke, N.: 1982, ‘Plasma and Magnetic Field Characteristics of Magnetic Flux Transfer Events’, J. Geophys. Res. 87, 2169.

  58. Podgorny, I. M., Dubinin, E. M., and Potanin, Yu. N.: 1980, ‘On Magnetic Curl in Front of the Magnetosphere Boundary’, Geophys. Res. Letters 7, 247.

  59. Quest, K. B. and Coroniti, F. V.: 1981a, ‘Tearing at the Dayside Magnetopause’, J. Geophys. Res. 86, 3289.

  60. Quest, K. B. and Coroniti, F. V.: 1981b, ‘Linear Theory of Tearing in a High β Plasma’, J. Geophys. Res. 86, 3299.

  61. Reiff, P. H.: 1984, in E. W. Hones (ed.), ‘Evidence of Magnetic Merging From Low-Altitude Spacecraft and Ground-Based Experiments’, Magnetic Reconnection in Space and Laboratory Plasmas, AGU, p. 104.

  62. Rijnbeek, R. P., Cowley, S. W. H., Southwood, D. J., and Russell, C. T.: 1984, ‘A Survey of Dayside Flux Transfer Events Observed by ISEE 1 and 2 Magnetometers’, J. Geophys. Res. 89, 786.

  63. Rosenbluth, M. N., Sagdeev, R. Z., Taylor, J. B., and Zaslavsky, G. M.: 1966, ‘The Destruction of Magnetic Surfaces’, Nucl. Fusion 6, 297.

  64. Russell, C. T. and Elphic, R. C.: 1979, ‘ISEE Observations of Flux Transfer Events at the Dayside Magnetopause’, Geophys. Res. Letters 6, 33.

  65. Russell, C. T., Berchem, J., and Luhmann, J. G.: 1984, ‘On the Source Region of Flux Transfer Events’, June 1984, IGPP Publ., No. 2571.

  66. Sakai, J. and Washimi, H.: 1982, ‘A Triggering of a Solar Flare by Magnetosonic Waves in a Neutral Sheet Plasma’, Astrophys. J. 258, 823.

  67. Sakai, J., Tajima, T., and Brunei, F.: 1984, ‘Forced Reconnection by Nonlinear MHD Waves and Sequential Triggering of Solar Flares’, Proceedings of a Course and Workshop on Plasma Astrophysics, Varenna, Italy, 28 August–7 September, 1984.

  68. Saunders, M. A., Russell, C. T., and Sckopke, N.: 1984, ‘Flux Transfer Events: Scale Size and Interior Structure’, Geophys. Res. Letters 11, 131.

  69. Schindler, K.: 1974, ‘A Theory of the Substorm Mechanism’, J. Geophys. Res. 79, 2803.

  70. Schindler, K.: 1979, ‘On the Role of Irregularities in Plasma Entry Into the Magnetosphere’ J. Geophys. Res. 84, 7257.

  71. Sibeck, D. G. and Siscoe, G. L.: 1984, ‘Downstream Properties of Magnetic Flux Transfer Events’, J. Geophys. Res. 89, 10709.

  72. Sonnerup, B. U. O.: 1984, in E. W. Hones (ed.), ‘Magnetic Reconnection at the Magnetopause’. An Overview’, Magnetic Reconnection in Space and Laboratory Plasmas, AGU, p. 92.

  73. Sonnerup, B. U. O. and Ledley, B. G.: 1974, ‘Magnetopause Rotational Forms’, J. Geophys. Res. 79, 4309.

  74. Sonnerup, B. U. O., Paschmann, G., Papamastorakis, I., Sckopke, N., Haerendel, G., Bame, S. J., Asbridge, J. B., Gosling, J. T., and Russell, C. T.: 1981, ‘Evidence for Magnetic Field Line Reconnection at the Earth's Magnetopause’, J. Geophys. Res. 86, 10049.

  75. Sotnikov, V. I., Shapiro, V. D., and Shevchenko, V. I.: 1981, ‘On the Nonlinear Theory of Current Instability of Short-Wave Drift Oscillations’, Physica 2D, 170.

  76. Swift, D. W. and Lee, L. C.: 1983, ‘Rotational Discontinuities and the Structure of the Magnetopause’, J. Geophys. Res. 88, 111.

  77. Swartz, K. and Hazeltine, R. D.: 1984, ‘Nonlinear Kinetic Theory of a Single Helicity Tearing Instability’, Phys. Fluids 27, 2043.

  78. Vaisberg, O. L., Galeev, A. A., Zeleny, L. M., Zastenker, G. N., Omeltchenko, A. N., Klimov, S. I., Savin, S. P., Ermolaev, V. I., Smirnov, V. N., and Nozdratchev, M. N.: 1983, ‘The Fine Structure of the Magnetopause: Prognoz 7, Prognoz 8 Measurements’, Kosmich. Issled. XXI, 57.

  79. Vasyliunas, V. M.: 1975, ‘Theoretical Models of Magnetic Field Line Merging, I’, Rev. Geophys. Space Phys. 13, 303.

  80. Wang, D. J. and Sonnerup, B. U. O.: 1984, ‘Electrostatic Structure of the Rotational Discontinuity’, Phys. Fluids 27, 1640.

  81. Zeleny, L. M. and Taktakishvili, A. L.: 1984, ‘Nonlinear Theory of Magnetic Islands Growth in a Sheared Magnetic Field’, Fizika Plazmy 10, 50.

  82. Zwan, R. J. and Wolf, R. A.: 1976, ‘Depletion of Solar-Wind Plasma Near a Planetary Boundary’, J. Geophys. Res. 86, 1635.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Galeev, A.A., Kuznetsova, M.M. & Zeleny, L.M. Magnetopause stability threshold for patchy reconnection. Space Sci Rev 44, 1–41 (1986). https://doi.org/10.1007/BF00227227

Download citation

Keywords

  • Flux Tube
  • Magnetic Surface
  • Magnetic Island
  • Magnetic Field Rotation
  • Geomagnetic Field Line