Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Information processing in the femur-tibia control loop of stick insects

1. The response characteristics of two nonspiking interneurons result from parallel excitatory and inhibitory inputs

Abstract

The complicated response characteristics of the identified nonspiking interneuron type E4 upon elongation stimuli to the femoral chordotonal organ (fCO) can be obtained by a computer simulation using the neuronal network simulator BioSim, if the following assumptions were introduced: (1) The interneurons receive direct excitatory input from position- and velocity-sensitive fCO afferents but also, in parallel delayed inhibition from the same velocity-sensitive afferents. (2) Position-sensitive afferents in part show adaptation with a rather long time-constant. A subsequent experimental analysis demonstrated that all these assumptions fit the reality: (1) Interneurons of type E4 receive direct excitatory input from fCO afferents. (2) Interneurons of type E4 are affected by velocity dependent delayed inhibitory inputs from the fCO. (3) The fCO does contain adapting position-sensitive sensory neurons, which have not been described before. The described principle of the information processing is also able to generate the response in interneurons of type E6 with less steep amplitude-velocity characteristic due to a different weighting of the direct excitation and delayed inhibition.

This is a preview of subscription content, log in to check access.

Abbreviations

EPSP :

excitatory postsynaptic potential

FETi :

fast extensor tibiae motor neuron

fCO :

femoral chordotonal organ

FT-control loop :

femur-tibia control loop

IPSP :

inhibitory postsynaptic potential

SETi :

slow extensor tibiae motor neuron

References

  1. Bässler U (1977) Sense organs in the femur of the stick insect and their relevance to the control of position of the femur-tibia joint. J Comp Physiol 121: 99–113

  2. Bässler U (1983a) Neural basis of elementary behavior in stick insects. Springer, Berlin Heidelberg New York

  3. Bässler U (1983b) The neural basis of catalepsy in the stick insect Cuniculina impigra 3. Characteristics of the extensor motor neurons. Biol Cybern 46: 159–165

  4. Bässler U (1991) Irrtum und Erkenntnis. Fehlerquellen im Erkenntnisprozeß von Biologie und Medizin. Springer, Berlin Heidelberg New York

  5. Bässler U (1993) The femur-tibia control system of stick insects a model system for the study of the neural basis of joint control. Brain Res Rev 18: 207–226

  6. Bässler U, Büschges A (1990) Interneurones participating in the ‘active reaction’ in stick insects. Biol Cybern 62: 529–538

  7. Bässler U, Storrer J (1980) The neural basis of the femur-tibiacontrol-system in the stick insect Carausius morosus. I. Motoneurons of the extensor-tibiae muscle. Biol Cybern 38: 107–114

  8. Bergdoll S, Grethe J, Koch UT, Andrick U (1991) Computer modeling of networks containing spiking and nonspiking neurons In: (Elsner N, Penzlin H (eds) Proceedings of the 19th Göttingen Neurobiological Conference. G. Thieme Stuttgart p 584

  9. Burrows M (1989) Processing of mechanosensory signals in local reflex pathways of the locust. J Exp Biol 146: 209–227

  10. Burrows M, Laurent GJ, Field LH (1988) Proprioceptive inputs to nonspiking local interneurons contribute to local reflexes of a locust hindleg. J Neurosci 8: 3085–3093

  11. Büschges A (1989) Processing of sensory input from the femoral chordotonal organ by spiking interneurones of stick insects. J Exp Biol 144: 81–111

  12. Büschges A (1990) Non-spiking pathways in a joint-control loop of the stick insect Carausius morosus. J Exp Biol 151: 133–160

  13. Büschges A (1994) The physiology of sensory cells in the ventral scoloparium of the stick insect femoral chordotonal organ. J Exp Biol 189: 285–292

  14. Büschges A, Schmitz J (1991) Nonspiking pathways antagonize the resistance reflex in the thoraco-coxal joint of stick insects. J Neurobiol 22: 224–237

  15. Büschges A, Wolf H (1995) Nonspiking local interneurons in insect leg motor control. I. Common layout and species-specific response properties of femur-tibia joint control pathways in stick insect and locust. J Neurophysiol (in press)

  16. Büschges A, Kittmann R, Schmitz J (1994) Identified nonspiking interneurons in leg reflexes and during walking in the stick insect. J Comp Physiol A 174: 685–700

  17. Christensen TA, Waldrop BR, Harrow ID, Hildebrand JG (1993) Local interneurons and information processing in the olfactory glomeruli of the moth Manduca sexta. J Comp Physiol A 173: 385–399

  18. Driesang RB (1994) Mechanismen der Informationsverarbeitung im ZNS der Stabheuschrecke Carausius morosus. Dissertation, Universität Kaiserslautern

  19. Driesang RB, Büschges A (1993a) The neural basis of catalepsy in the stick insect. IV. Properties of nonspiking interneurons. J Comp Physiol A 173: 445–454

  20. Driesang RB, Büschges A (1993b) Neural mechanisms underlying state dependent changes in the motor output of a joint control loop. In: Elsner N, Heisenberg M (eds) Proceedings of the 21st Göttingen Neurobiological Conference. G Thieme Stuttgart p 174

  21. El Manira A, Cattaert D, Clarac F (1991) Monosynaptic connections mediate resistance reflexs in crayfish (Procambarus clarkii) walking legs. J Comp Physiol A 168: 337–349

  22. Grimm K, Sauer AE (1995) The high number of neurons contributes to the robustness of the locust flight-CPG against parameter variation. Biol Cybern 72: 329–335

  23. Hofman T, Koch UT (1985) Acceleration receptors in the fermoral chordotonal organ of the stick insect, Cuniculina impigra. J Exp Biol 114: 225–237

  24. Hofmann T, Koch UT, Bässler U (1985) Physiology of the femoral chordotonal organ in the stick insect, Cuniculina impigra. J Exp Biol 114: 207–223

  25. Koch UT, Brunner M (1988) A modular analog neuron-model for research and teaching. Biol Cybern 59: 303–312

  26. Kondoh Y, Newland PL (1992) Dynamics of a negative feedback loop underlying a resistance reflex of leg motor neurones in the locust. Proceedings of the Third International Congress of Neuroethology. Montreal, Quebec, Canada, p 117

  27. Laurent G (1990) Voltage-dependent nonlinearities in the membrane of locust nonspiking interneurons and their significance for synaptic integration. J Neurosci 10: 2268–2280

  28. Lockery SR, Kristan WB Jr (1990a) Distributed processing of sensory information in the leech. II. Identification of interneurons contributing to the local bending reflex. J Neurosci 10: 1816–1829

  29. Lockery SR, Kristan WB Jr (1990b) Distributed processing of sensory information in the leech. I Input-output relations of the local bending reflex. J Neurosci 10: 1811–1815

  30. Matheson T (1992) Range fractionation in the locust metathoracic femoral chordotonal organ. J Comp Physiol A 170: 509–520

  31. Nagayama T, Hisada M (1987) Opposing parallel connections through crayfish local nonspiking interneurons. J Comp Neurol 257: 347–358

  32. Pearson KG (1993) Common principles of motor control in vertebrates and invertebrates. Annu Rev Neurosci 16: 265–297

  33. Pearson KG, Wong RKS, Fourtner CR (1976) Connexions between hair-plate afferents and motoneurones in the cockroach leg. J Exp Biol 64: 251–266

  34. Prochazka A (1989) Sensorimotor gain control: a basic strategy of motor systems? Progr Neurobiol 33: 281–307

  35. Robertson RM (1991) Delayed excitatory connections in the flight system of the locust. J Neurophysiol 65: 1150–1157

  36. Schmitz J, Delcomyn F, Büschges A (1991a) Oil and hook electrodes for en passant recording from small nerves. In: Conn PM (ed) Methods in neuroscience 4. Academic Press, San Diego New York Boston, 266–278

  37. Schmitz J, Dean J, Kittmann R (1991b) Central projections of leg sense organs in Carausius morosus (Insecta, Phasmida) Zoomorphology 111: 19–34

  38. Shepherd GM (1988) Neurobiology. Oxford University Press, New York

  39. Weidler DJ, Diecke FPJ (1969) The role of cation conduction in the central nervous system in herbivorous insect Carausius morosus. Z Vergl Physiol 64: 372–399

  40. Weiland G, Koch UT (1987) Sensory feedback during active movements of stick insects. J Exp Biol 133: 137–156

  41. Wendel O (1993) MOBIS — Ein wissensbasiertes Experimentiersystem zur Simulation biologisch orientierter neuronaler Netze. In: Hofestädt R, Krükerberg F, Lengauer T (eds) Informatik in den Biowissenschaften. Springer, Berlin, 203–213

  42. Wendel O, Sauer AE (1994) Automated generation and analysis of simulation experiments for biological neural networks. In: Elsner N, Breer H (eds) Proceedings of the 22nd Göttingen Neurobiological Conference. Thieme, Stuttgart p 865

  43. Wolf H, Büschges A (1995) Nonspiking local interneurons in insect leg motor control. II. The role of local nonspiking interneurons in the control of leg-swing during walking. J Neurophysiol (in press)

  44. Wu J-Y, Cohen LB, Flax CX (1994) Neuronal activity during different behaviors in Aplysia: a distributed organization? Science 263: 820–823

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sauer, A.E., Driesang, R.B., Büschges, A. et al. Information processing in the femur-tibia control loop of stick insects. J Comp Physiol A 177, 145–158 (1995). https://doi.org/10.1007/BF00225095

Download citation

Key words

  • Nonspiking interneuron
  • Neuronal network
  • Posture control
  • Simulation
  • Parliamentary principle