Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Transformation of cytoplasmic actin importance for the organization of the contractile gel reticulnm and the contraction — relaxation cycle of cytoplasmic actomyosin


(1) Within the low viscous flowing endoplasm of Physarum polycephalum a considerable amount of actin is in the non-filamentous state. This can be demonstrated by applying poly-L-lysin to surface spreads of native protoplasm. (2) It has been shown that in protoplasmic drops the endoplasm-ectoplasm transformation is accompanied by an actin polymerization from the non-filamentous state to F-actin. (3) The actual state of the labile G-F-actin equilibrium determines the varying consistency (viscosity) of the cytoplasm. (4) Increasing viscosity can be interpreted as being brought about by a) shifting of the G-F-actin equilibrium to the filamentous side, and (b) increased myosin-mediated binding sites between actin filaments. (5) Polymerization and depolymerization processes are involved in the rhythmically occurring contraction-relaxation cycle of cytoplasmic actomyosin in Physarum. (6) Cytoplasmic actin and myosin represent the architectural proteins of the contractile gel reticulum in eukaryotic cells. (7) The importance of the regulation of actin polymerization as a basic control mechanism of the eukaryotic cell is discussed.

This is a preview of subscription content, log in to check access.


  1. Agostini, B., Govindan, V.M., Hofmann, W., Wieland, Th.: Phalloidin-induced proliferation of actin filaments within rat hepatocytes. Z. Naturforsch. 30, 793–795 (1975)

  2. Albrecht-Buehler, G., Goldman, R.D.: Microspike-mediated particle transport towards the cell body during early spreading of 3T3 cells. Exp. Cell Res. 97, 329–339 (1976)

  3. Alléra, A., Wohlfarth-Bottermann, K.E.: Weitreichende fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung. IX. Aggregationszustände des Myosins und Bedingungen zur Entstehung von Myosinfilamenten in den Plasmodien von Physarum polycephalum. Cytobiologie 6, 261–286 (1972)

  4. Beck, R., Hinssen, H., Komnick, H., Stockem, W., Wohlfarth-Bottermann, K.E.: Weitreichende fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung. V. Kontraktion, ATP-ase Aktivität und Feinstruktur isolierter Actomyosinfäden von Physarum polycephalum. Cytobiologie 2, 259–274 (1970)

  5. Buckley, I.K.: Three dimensional fine structure of cultured cells. Possible implications for subcellular motility. Tissue and Cell 7, 51–72 (1975)

  6. Camp, W.G.: A method of cultivating myxomycete plasmodia. Bull. Torrey bot. Cl. 63, 205–210 (1936)

  7. Dancker, P., Löw, I., Hasselbach, W., Wieland, Th.: Interaction of actin with phalloidin. Biochim. biophys. Acta (Amst.) 400, 407–414 (1975)

  8. Erickson, H.P.: Cold Spring Harb. Conf. on Cell Motility (1975) and J. Cell Biol. in press: 1976

  9. Fleischer, M., Wohlfarth-Bottermann, K.E.: Correlation between tension force generation, fibrillogenesis and ultrastructure of cytoplasmic actomyosin during isometric and isotonic contractions of protoplasmic strands. Cytobiologie 10, 339–365 (1975)

  10. Frey-Wyssling, A.: Die submikroskopische Struktur des Cytoplasmas. In: Protoplasmatologia II. Cytoplasma. Wien: Springer 1955

  11. Frey-Wyssling, A.: Macromolecules in cell structure. Cambridge: Harvard University Press 1957

  12. Gall, J.: Chromosome fibres from an interphase nucleus. Science 139, 120–121 (1963)

  13. Gingell, D., Palmer, J.F.: Changes in membrane impedance associated with cortical contraction in the egg of Xenopus laevis. Nature (Lond.) 217, 98–102 (1968)

  14. Hatano, S., Oosawa, F.: Isolation and characterization of plasmodial actin. Biochim. biophys. Acta (Amst.) 127, 488–498 (1966)

  15. Hatano, S.. Takahashi, K.: Structure of myosin A from a myxomycete plasmodium and its aggregation at low ionic salt concentrations. J. Mechanochem. Cell Motility 1, 7–14 (1971)

  16. Heilbrunn, L.V.: The viscosity of protoplasm. In: Protoplasmatologia II. Cytoplasma. Wien: Springer 1958

  17. Hinssen, H.: Synthetische Myosinfilamente von Schleimpilz-Plasmodien. Cytobiologie 2, 326–331 (1970)

  18. Hinssen, H.: Actin in isoliertem Grundplasma von Physarum polycephalum. Cytobiologie 5, 146–164 (1972)

  19. Hinssen, H., D'Haese, J.: Filament formation by slime mould myosin isolated at low ionic strength. J. Cell Sci. 15, 113–129 (1974)

  20. Huxley, H.E.: Electron microscope studies on the structure of natural and synthetic filaments from striated muscle. J. molec. Biol. 7, 281–308 (1963)

  21. Isenberg, G., Rathke, P.C., Hülsmann, N., Franke, W.W., Wohlfarth-Bottermann, K.E.: Cytoplasmic actomyosin fibrils in tissue culture cells — Direct proof of contractility by visualization of ATP-induced contraction in fibrils isolated by laser micro-beam dissection. Cell Tiss. Res. 166, 427–443 (1976)

  22. Kane, R.E.: Preparation and purification of polymerized actin from sea urchin egg extracts. J. Cell Biol. 66, 305–315 (1975)

  23. Kessler, D.: On the location of myosin in the myxomycete Physarum polycephalum and its possible function in cytoplasmic streaming. J. Mechanochem. Cell Motility 1, 125–137 (1972)

  24. Kessler, D., Nachmias, V.T., Loewy, A.: Actomyosin content of Physarum plasmodia and detection of immunological crossreactions with myosins from related species. J. Cell Biol. 69, 393–406 (1976)

  25. Komnick, H., Stockem, W., Wohlfarth-Bottermann, K.E.: Cell motility: Mechanisms in protoplasmic streaming and ameboid movement. Int. Rev. Cytol. 34, 169–249 (1973)

  26. Kushida, H.: A styrene methacrylate resin embedding method for ultrathin sectioning. J. Electron Microscopy 10, 16–19 (1961)

  27. Lengsfeld, A., Löw, I., Wieland, Th., Dancker, P., Hasselbach, W.: Interaction of Phalloidin with actin. Proc. nat. Acad. Sci. (Wash.) 71, 2803–2807 (1974)

  28. Lowey, S., Cohen, C.: Studies on the structure of myosin. J. molec. Biol. 4, 293–308 (1962)

  29. Luchtel, D., Bluemink, J.G., De Laat, S.W.: The effect of injected Cytochalasin B on filament organization in the cleaving egg of Xenopus laevis. J. Ultrastruct. Res. 54, 406–419 (1976)

  30. Marchesi, V.T., Palade, G.E.: The localization of Mg-Na-K activated adenosine triphosphate on red cell ghost membranes. J. Cell Biol. 35, 385–404 (1967)

  31. Nachmias, V.T.: Properties of Physarum myosin purified by a potassium iodide procedure. J. Cell Biol. 62, 54–65 (1974)

  32. Nagai, R., Kato, I.: Cytoplasmic filaments and their assembly into bundles in Physarum plasmodium. Protoplasma 86, 141–158 (1975)

  33. Parducz, B.: Eine neue Schnellfixierungsmethode im Dienste der Protistenforschung und des Unterrichts. Ann. Mus. Nat. Hung 2, 5–12 (1952)

  34. Parsons, D.F.: Negative staining of thinly spread cells and associated veins. J. Cell Biol. 16, 620–626 (1963)

  35. Pinder, J.C., Bray, D., Gratzer, W.B.: Actin polymerization induced by spectrin. Nature (Lond.) 258, 765–766 (1975)

  36. Pollard, T.D.: The role of actin in the temperature dependent gelation and contraction of extracts of Acanth amoeba. J. Cell Biol. 68, 579–601 (1976)

  37. Pollard, T.D., Ito, S.: Cytoplasmic filaments of Amoeba proteus. I. The role of filaments in consistency changes and movement. J. Cell Biol. 46, 267–289 (1970)

  38. Pollard, T.D., Weihing, R.R.: Actin and myosin and cell movement. CRC Critical Reviews of Biochem. 2, 1–65 (1974)

  39. Portzehl, H., Schramm, G., Weber, H.H.: Actomyosin und seine Komponenten. 1. Mitt.: Darstellung von Actomyosin und L-Myosin und Bestimmung ihrer physikalischen Konstanten. Z. Naturforsch. 56, 61–74 (1950)

  40. Rinaldi, R., Opas, M., Hrebenda, B.: Contractility of glycerinated Amoeba proteus and Chaos chaos. J. Protozool. 22, 286–292 (1975)

  41. Rüegg, J.C.: Smooth muscle tone. Physiol. Rev. 51, 201–248 (1971)

  42. Schroeder, T.E.: Dynamics of the contractile ring. In: Molecules and cell movement (S. Inoué, R.E. Stephens, eds.). Soc. Gen. Physiol. Series, Vol. 30, pp. 305–334. New York: Raven Press 1975

  43. Shoenberg, F.C.: An electron microscope study of the influence of divalent ions on myosin filament formation in chicken gizzard extracts and homogenates. Tissue and Cell 1, 83–96 (1969)

  44. Shoenberg, F.C., Needham, D.M.: A study of the mechanism of contraction in vertebrate smooth muscle. Biol. Rev. 51, 53–104 (1976)

  45. Spudich, A.J., Cooke, R.: Supramolecular forms of actin from amoeba of Dictyostelium discoideum. J. bil. Chem. 250, 7485–7491 (1975)

  46. Thiele, H.: Histolyse und Histogenese. Gewebe und ionotrope Gele. Prinzip einer Strukturbildung. Frankfurt/Main: Akad. Verlagsges. 1967

  47. Tilney, L.G.: The polymerization of actin. II. How non-filamentous actin becomes non randomly distributed in sperm: Evidence for the association of this actin with membranes. J. Cell Biol. 69, 51–72 (1976a)

  48. Tilney, L.G.: The polymerization of actin. III. Aggregates on non-filamentous actin and its associated protein: A storage form of actin. J. Cell Biol. 69, 73–89 (1976b)

  49. Tilney, L.G.: The role of actin in non-muscle motility. In: Molecules and cell movement (S. Inoué, R.E. Stephens, eds.). Soc. Gen. Physiol. Series, Vol. 30, pp. 339–388. New York: Raven Press 1975

  50. Tilney, L.G., Detmers, P.: Actin in erythrocyte ghosts and its association with spectrin. Evidence for a non-filamentous form of these two molecules in situ. J. Cell Biol. 66, 508–520 (1975)

  51. Tilney, L.G., Hatano, S., Ishikawa, H., Mooseker, M.S.: The polymerization of actin: its role in the generation of the acrosomal process of certain echinoderm sperm. J. Cell Biol. 59, 109–126 (1973)

  52. Wieland, Th.: Phallotoxins and microfilaments. In: Molecular basis of motility (L.H.G. Heilmeyer, J.C. Rüegg, Th. Wieland, eds.). Berlin-Heidelberg-New York: Springer 1975

  53. Wohlfarth-Bottermann, K.E.: Protistenstudien. X. Licht- und elektronenmikroskopische Untersuchungen an der Amoebe Hyalodiscus simplex. Protoplasma 52, 58–107 (1960)

  54. Wohlfarth-Bottermann, K.E.: Cytologische Studien. VII. Strukturaspekte der Grundsubstanz des Cytoplasmas nach Einwirkung verschiedener Fixierungsmittel. Untersuchungen am Hyaloplasma von Amoeben der Limax- und Proteus-Gruppe. Protoplasma 53, 259–290 (1961)

  55. Wohlfarth-Bottermann, K.E.: Weitreichende fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung. I. Elektronenmikroskopischer Nachweis und Feinstruktur. Protoplasma 54, 514–539 (1962)

  56. Wohlfarth-Bottermann, K.E.: Cell structures and their significance for amoeboid movement. Int. Rev. Cytol. 16, 61–132 (1964a)

  57. Wohlfarth-Bottermann, K.E.: Differentiations of the ground cytoplasm and their significance for the generation of the motive force of amoeboid movement. In: Primitive motile systems in cell biology (R.D. Allen and N. Kamiya, eds.), pp. 79–109. New York: Academic Press 1964 b

  58. Wohlfarth-Bottermann, K.E.: Weitreichende fibrilläre Protoplasmadifferenzierungen und ihre Bedeutung für die Protoplasmaströmung. III. Entstehung und experimentell induzierbare Musterbildungen. Wilhelm Roux' Arch. Entwickl.-Mech. Org. 156, 371–403 (1965)

  59. Wohlfarth-Bottermann, K.E.: Grundplasma. In: Grundlagen der Cytologie (G.C. Hirsch, H. Ruska, P. Sitte, eds.), pp. 123–133. Stuttgart: Gustav Fischer 1973

  60. Wohlfarth-Bottermann, K.E.: Tensiometric demonstration of endogenous, oscillating contractions in plasmodia of Physarum polycephalum. Z. Pflanzenphysiol. 76, 14–27 (1975)

  61. Wohlfarth-Bottermann, K.E.: Ursachen von Zellbewegungen — cytoplasmatische Actomyosine und ihre Bedeutung für Protoplasmaströmungen und Zellmotilität. Vortrag 4. 2. 1975, Deutsche Akademie der Naturforscher Leopoldina, Leopoldina (in press)

  62. Wohlfarth-Bottermann, K.E., Fleischer, M.: Cycling aggregation patterns of cytoplasmic F-actin coordinated with oscillating tension force generation. Cell Tiss. Res. 165, 327–344 (1976)

  63. Wohlfarth-Bottermann, K.E., Stockem, W.: Die Regeneration des Plasmalemms von Physarum polycephalum. Wilhelm Roux' Archiv 164, 321–340 (1970)

Download references

Author information

Correspondence to Prof. Dr. K. E. Wohlfarth-Bottermann.

Additional information

The authors wish to thank Dr. H. Hinssen and R. Beck for the preparation of HMM from rabbit skeletal muscle and for performing the gel-electrophoresis, and Dr. R.L. Snipes for reading the manuscript.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Isenberg, G., Wohlfarth-Bottermann, K.E. Transformation of cytoplasmic actin importance for the organization of the contractile gel reticulnm and the contraction — relaxation cycle of cytoplasmic actomyosin. Cell Tissue Res. 173, 495–528 (1976).

Download citation

Key words

  • Cytoplasmic actomyosin
  • Actin transformation
  • Contractile gel reticulum
  • Cytoplasmic viscosity
  • Cell motility
  • Poly-L-lysin
  • Phalloidin