Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Location and dynamic properties of the spike generator in an insect mechanosensory neuron

  • 75 Accesses

  • 3 Citations


1.The cereal bristle hairs of the cockroach, Periplaneta americana, are each innervated by one mechanosensory cell and 1–5 chemosensory cells. In transepithelial recordings, chemo- and mechanosensory spikes could be discriminated from each other by their relative amplitude. 2. When current steps were applied via the sensory hair, trains of impulses were triggered whatever the polarity of the current. 3. All responses adapted to the current, but the time course of adaptation was fitted by a power law for outward currents and an exponential law for inward currents. 4. During application of outward currents, the spikes showed a negative initial phase on which a small positive component was superimposed; strong polarizations produced purely negative spikes. More classical spikes with a positive initial phase were induced by inward currents. 5. The present work supports the hypothesis of a direct excitability of the apical dendrite in cereal bristle mechanoreceptors and confirms previous results suggesting that spikes are normally triggered within that region during mechanical stimulations. It is also established, for the first time, that adaptation to currents may be different in the apical dendrite and in more basal regions of the same mechanosensory neuron.

This is a preview of subscription content, log in to check access.


RP :

receptor potential


transepithelial voltage




  1. Basarsky TA, French AS (1991) Intracellular measurements from a rapidly adapting sensory neuron. J Neurophysiol 65: 49–56

  2. Bernard J, Guillet JC, Coillot JP (1980) Evidence for a barrier between blood and sensory terminal in an insect mechanoreceptor. Comp Biochem Physiol 67A: 573–579

  3. Brown MC, Stein RB (1966) Quantitative studies on the slowly adapting stretch receptor of the crayfish. Kybernetik 3: 175–185

  4. Buño W Jr, Monti-Bloch L, Crispino L (1981) Dynamic properties of cockroach “dbristlelike” hair sensilla. J Neurobiol 12: 101–121

  5. De Kramer JJ (1985) The electrical circuitry of an olfactory sensillum in Antheraea polyphemus. J Neurosci 5: 2484–2493

  6. De Kramer JJ, Kaissling KE, Keil TA (1984) Passive electrical properties of insect olfactory sensilla may produce the biphasic shape of spikes. Chem Sens 8: 289–295

  7. Erler G, Thurm U (1981) Dendritic impulse initiation in an epithelial sensory neuron. J Comp Physiol 142: 237–249

  8. French AS (1984) Action potential adaptation in the femoral tactile spine of the cockroach, Periplaneta americana. J Comp Physiol A 155: 803–812

  9. French AS (1988) Transduction mechanisms of mechanosensilla. Annu Rev Entomol 33: 39–58

  10. French AS (1992) Mechanotransduction. Annu Rev Physiol 54: 135–152

  11. French AS, Torkkeli PH (1994a) The basis of rapid adaptation in mechanoreceptors. NIPS 9: 158–161

  12. French AS, Torkkeli PH (1994b) The time course of sensory adaptation in the cockroach tactile spine. Neurosci Lett 178: 147–150

  13. Füller H, Ernst A (1977) Die Ultrastruktur der cercalen Cutilarsensillen von Periplaneta americana L. Zool Jb Anat 98: 544–571

  14. Füller H, Ernst A, Klare G (1981) Iontophoretic and electromicroscopic investigations of the cereal nerves of Periplaneta americana (L). Zool Jb Anat 105: 371–405

  15. Gödde J, Krefting ER (1989) Ions in the receptor lymph of the labellar taste hairs of the fly Protophormia terraenovae. J Insect Physiol 35: 107–111

  16. Grünert U, Gnatzy W (1987) K+ and Ca++ in the receptor lymph of arthropod cuticular mechanoreceptors. J Comp Physiol A 161: 329–333

  17. Guillet JC (1975) Relations stimulus-réponse dans le cas d'un mécanorécepteur d'insecte à adaptation totale. J Insect Physiol 21: 1355–1364

  18. Guillet JC (1976) Etude électrophysiologique de mécanorécepteurs externes d'insectes. Thèse d'Etat, Université de Rennes, France

  19. Guillet JC, Bernard J (1972) Shape and amplitude of the spikes induced by natural or electrical stimulation in insect receptors. J Insect Physiol 18: 2155–2171

  20. Guillet JC, Bernard J, Coillot JP, Callec JJ (1980) Electrical properties of the dendrite in an insect mechanoreceptor: effects of antidromic or direct electrical stimulation. J Insect Physiol 26: 755–762

  21. Hamon A, Guillet JC (1986) Effects of oxygen on the cereal receptors of the cockroach Periplaneta americana. Comp Biochem Physiol 83A: 427–431

  22. Hamon A, Guillet JC (1994) Some electrical properties of the cereal anemoreceptors of the cockroach, Periplaneta americana. Comp Biochem Physiol 107A: 357–368

  23. Hamon A, Guillet JC, Callec JJ (1988) Initiation and conduction of impulses in mechanosensory neurons: effects of hypoxia. Comp Biochem Physiol 91A: 797–805

  24. Hamon A, Guillet JC, Callec JJ (1990) A gradient of synaptic efficacy and its presynaptic basis in the cereal system of the cockroach. J Comp Physiol A 167: 363–376

  25. Hansen-Delkeskamp E (1992) Functional characterization of antennal contact chemoreceptors in the cockroach Periplaneta americana. J Insect Physiol 38: 813–822

  26. Kijima H, Okada Y, Oiki S, Goshima S, Nagata K, Kazawa T (1995) Free ion concentrations in receptor lymph and role of transepithelial voltage in the fly labellar taste receptor. J Comp Physiol A 177: 123–133

  27. Küppers J (1974) Measurements of the ionic milieu of the receptor terminal in mechanoreceptive sensilla of insects. In: Schwartzkopff J (ed) Mechanoreception. Abh Rhein-Westf Akad Wiss 53, pp 387–397

  28. McIver SB (1985) Mechanoreception. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 6. Pergamon Press, Oxford, pp 71–132

  29. Morita H, Shiraishi A (1985) Chemoreception physiology. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmcology, vol 6. Pergamon Press, Oxford, pp 133–170

  30. Rick R, Barth FGV, Pavel A (1976) X-ray microanalysis of receptor lymph in a cuticular arthropod sensillum. J Comp Physiol 110: 89–95

  31. Schmidt K, Gnatzy W (1972) Die Feinstruktur der Sineshaare auf den Cerci von Gryllus bimaculatus Deg (Saltatoria, Gryllidae). III: Die kurzen Borstenhaare. Z Zellforsch 126: 206–222

  32. Seyfarth EA, French AS (1994) Intracellular characterization of identified sensory cells in a new spider mechanoreceptor preparation. J Neurophysiol 71: 1422–1427

  33. Seyfarth EA, Bohnenberger J, Thorson J (1982) Electrical and mechanical stimulation of a spider slit sensillum: outward currents excites. J Comp Physiol 147: 423–432

  34. Seyfarth EA, Sanders EJ, French AS (1995) Sodium channel distribution in a spider mechanosensory organ. Brain Res 683: 93–101

  35. Specht Y (1977) Funktionsmorphologie und Elektrophysiologie der Sinnesborsten auf den Cerci der Schabe Periplaneta americana. Thesis Universität Braunschweig, Germany

  36. Stockbridge LL, French AS (1991) The morphological basis of intracellular measurements in the cockroach tactile spine neuron. J Comp Physiol A 169: 417–477

  37. Thurm U, Küppers J (1980) Epithelial physiology of insect sensilla In: Locke M, Smith D (eds) Insect biology in the future. Academic Press, New York, pp 735–763

  38. Torkkeli PH, French AS (1993) Mapping extracellular excitability in an insect mechanoreceptor neuron. Brain Res 632: 317–320

  39. Zacharuk RY (1985) Antennae and sensilla. In: Kerkut GA, Gilbert LI (eds) Comprehensive insect physiology, biochemistry and pharmacology, vol 6. Pergamon Press, Oxford, pp 1–69

Download references

Author information

Correspondence to A. Hamon.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hamon, A., Guillet, J.-. Location and dynamic properties of the spike generator in an insect mechanosensory neuron. J Comp Physiol A 179, 235–243 (1996). https://doi.org/10.1007/BF00222790

Download citation

Key words

  • Adaptation
  • Insect
  • Dendrite
  • Encoding
  • Mechanoreceptor
  • Power law