Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Immunocytochemical evidence for the presence of “mammalian” neurohormonal peptides in neurones of the tapeworm Diphyllobothrium dendriticum

  • 30 Accesses

  • 44 Citations

Summary

In the nervous system of the obligatory endoparasite Diphyllobothrium dendriticum immunoreactivity (IR) to growth hormone-releasing factor (GRF), peptide histidine isoleucine (PHI), bovine pancreatic polypeptide (BPP), gastrin, gastrin-releasing peptide (GRP), oxytocin, FMRF-amide (FMRF) and serotonin (5HT) was demonstrated by immunocytochemical methods. A very strong GRF-IR was observed in the CNS and PNS of larvae and of the constantly growing adult worms. GRF-IR axon terminals occur beneath the basal lamina of the tegument along the inside of the bothridia, the holdfast organ of the worm. GRF-IR fibres surround the yolk producing vitelline glands and occur in the wall of the vagina. PHI-IR was observed in the CNS and PNS of larvae and adult worms. PHI-IR terminals occur beneath the basal lamina of the tegument along the strobila, the nutrient absorbing surface of the worm. PHI-IR fibres seem to innervate the testicular follicles. FMRF-IR fibres and perikarya occur close to the vitelline glands and the uterine pore and in the male copulatory organ. Numerous large 5HT-IR perikarya with long varicose fibres were observed in the nervous system of the worm. 5HT-IR perikarya occur close to the genital atrium. D. dendriticum is the phylogenetically lowest organism in which IR to PHI has been demonstrated.

This is a preview of subscription content, log in to check access.

References

  1. Alm P, Alumets J, Håkanson R, Owman Ch, Sjöberg N-O, Sundler F, Walles B (1980) Origin and distribution of VIP (vasoactive intestinal polypeptide)-nerves in the genito-urinary tract. Cell Tissue Res 205:337–347

  2. Anagnostides AA, Christofides ND, Tatemoto K, Chadwick VS, Bloom SR (1984 a) Peptide histidine isoleucine: a secretagogue in human jejuneum. Gut 25:381–385

  3. Anagnostides AA, Manolas K, Christofides ND, Yiangou Y, Welbourn RB, Bloom SR, Chadwick VS (1984 b) Peptide histidine isoleucine (PHI): A secretagogue in porcine intestine. Dig Dis Sci 28:893–896

  4. Andries J-C, Tramu G (1984) Détection immunohistochimique de substances apparentées à des hormones peptidiques de Mammifères dans le mésenteron d'Aeshna cyanea (Insecte, Odonate). CR Acad Sc Paris 299:181–184

  5. Andries J-C, Belemtougri G, Tramu G (1984) Immunocytochemical demonstration of growth hormone-releasing factor-like material in the nervous system of an insect, Aeshna cyanea (Odonata). Neuropeptides 4:519–528

  6. Brennan LJ, McLoughlin TA, Mutt V, Tatemoto K, Wood JR (1982) The effects of PHI, a newly isolated peptide, on gall bladder function in the guinea pig. J Physiol (London) 329:71–72

  7. Coons AH, Leduc EH, Connolly JM (1955) Studies on antibody production. I. A method for the histochemical demonstration of specific antibody and its application to a study of the hyperimmune rabbit. J Exp Med 102:49–60

  8. Dimaline R, Dockray GJ (1980) Actions of a new peptide from porcine intestine (PHI) on pancreatic secretion in the rat and turkey. Life Sci 27:1947–1951

  9. Falkmer S, El-Salhy M, Titlbach M (1984) Evolution of the neuroendocrine system in vertebrates. A review with particular reference to the phylogeny and postnatal maturation of the islet parenchyma. In: Falkmer S, Håkanson R, Sundler F (eds) Evolution and tumour pathology of the neuroendocrine system. Elsevier Science Publishers, Amsterdam, New York, Oxford, pp 59–87

  10. Falkmer S, Gustafsson MKS, Sundler F (1985) Phylogenetic aspects on the neuroendocrine system. A minireview with particular reference to cells storing neurohormonal peptides in some primitive protostomian invertebrates (Flatworms, Annelids). Nord Psykiatr Tidsskr 11:21–30

  11. Grimmelikhuijzen CJP (1984) Peptides in the nervous system of coelenterates. In: Falkmer S, Håkanson R, Sundler F (eds) Evolution and tumour pathology of the neuroendocrine system. Elsevier Science Publishers, Amsterdam, New York, Oxford, pp 39–58

  12. Gustafsson MKS (1984) Synapses in Diphyllobothrium dendriticum (Cestoda). An electron microscopical study. Ann Zool Fennici 21:167–175

  13. Gustafsson MKS, Wikgren MC (1981 a) Peptidergic and aminergic neurons in adult Diphyllobothrium dendriticum Nitzsch, 1824 (Cestoda, Pseudophyllidea) Z Parasitenkd 64:121–134

  14. Gustafsson MKS, Wikgren MC (1981 b) Activation of the peptidergic neurosecretory system in Diphyllobothrium dendriticum (Cestoda, Pseudophyllidea). Parasitology 83:243–247

  15. Gustafsson MKS, Wikgren MC (1981 c) Release of neurosecretory material by protrusions of bounding membranes extending through the axolemma, in Diphyllobothrium dendriticum (Cestoda). Cell Tissue Res 220:473–479

  16. Gustafsson MKS, Wikgren MC, Karhi TJ, Schot LPC (1985) Immunocytochemical demonstration of neuropeptides and serotonin in the tapeworm Diphyllobothrium dendriticum. Cell Tissue Res 240:255–260

  17. Itoh N, Obata K, Yanaihara N, Okamoto H (1983) Human preprovasoactive intestinal polypeptide contains a novel PHI-27-like peptide, PHM-27. Nature 304:547–549

  18. LeRoith D, Shiloach J, Roth J, Liotta AS, Krieger DT, Lewis M, Pert CB (1981) Evolutionary origins of vertebrate hormones: material very similar to adrenocorticotropic hormone, beta-endorphin, and dynorphin in protozoa. Trans Assoc Am Physicians 94:52–60

  19. Lindroos P (1983) The excretory ducts of Diphyllobothrium dendriticum (Nitzsch, 1824) plerocercoids: ultrastructure and marker distribution. Z Parasitenkd 69:229–237

  20. Polak JM, Bloom SR (1983) Immunocytochemistry of regulatory peptides. In: Polak JM, van Noorden S (eds) Immunocytochemistry. Practical applications in pathology and biology. Wright PSG, Bristol, London, Boston, pp 184–211

  21. Reinecke M, Forssmann W-G (1984) Why do we study the phylogeny of neuropeptide hormones? In: Falkmer S, Håkanson R, Sundler F (eds) Evolution and tumour pathology of the neuroendocrine system. Elsevier Science Publishers, Amsterdam, New York, Oxford, pp 1–5

  22. Reuter M, Wikgren M, Palmberg I (1980) The nervous system of Microstomum lineare (Turbellaria, Macrostomida). I. A fluorescence and electron microscopic study. Cell Tissue Res 211:31–40

  23. Reuter M, Karhi T, Schot LPC (1984) Immunocytochemical demonstration of peptidergic neurons in the central and peripheral nervous systems of the flatworm Microstomum linare with antiserum to FMRF-amide. Cell Tissue Res 238:431–436

  24. Schot LPC, Boer HH, Swaab DF, Noorden S van (1981) Immunocytochemical demonstration of peptidergic neurons in the central nervous system of the pond snail Lymnaea stagnalis with antisera raised to biologically active peptides of vertebrates. Cell Tissue Res 216:273–291

  25. Shaw MK (1981) The ultrastructure of synapses in the brain of Gastrocotyle trachuri (Monogenea, Platyhelminthes). Cell Tissue Res 220:181–189

  26. Shaw MK (1982) The fine structure of the brain of Gastrocotyle trachuri (Monogenea, Platyhelminthes). Cell Tissue Res 226:449–460

  27. Sorenson RL, Sasek CA, Elde RP (1984) Phe-met-arg-phe-amide (FMRF-NH2) inhibits insulin and somatostatin secretion and anti-FMRF-NH2 sera detects pancreatic polypeptide cells in the rat islet. Peptides 5:777–782

  28. Sternberger LA (1974) Immunocytochemistry. In: Oster A, Weiss L (eds) Foundation of immunology series. Prentice Hall Inc, Englewood Cliffs, New Jersey

  29. Sundler F, Håkanson R, Alumets J, Walles B (1977) Neuronal localization of pancreatic polypeptide (PP) and vasoactive intestinal peptide (VIP) immunoreactivity in the earthworm (Lumbricus terrestris). Brain Res Bull 2:61–65

  30. Szecowka J, Tatemoto K, Mutt V, Efendic S (1980) Interaction of a newly isolated intestinal polypeptide (PHI) with glucose and arginine to effect the secretion of insulin and glucagon. Life Sci 26:435–438

  31. Szecowka J, Lins PE, Tatemoto K, Efendic S (1983) Effects of porcine intestinal heptacosapeptide and vasoactive intestinal polypeptide on insulin and glucagon secretion in rats. Endocrinology 112:1469–1473

  32. Van Noorden S (1984) The neuroendocrine system in protostomian and deuterostomian invertebrates and lower vertebrates. In: Falkmer S, Håkanson R, Sundler F (eds) Evolution and tumour pathology of the neuroendocrine system. Elsevier Science Publishers, Amsterdam, New York, Oxford, pp 7–38

  33. Veenstra JA (1984) Immunocytochemical demonstration of a homology in peptidergic neurosecretory cells in the suboesophageal ganglion of a beetle and a locust with antisera to bovine pancreatic polypeptide, FMRF-amide, vasopressin and α-MSH. Neurosci Lett 48:185–190

  34. Veenstra JA, Schooneveld H (1984) Immunocytochemical localisation of neurons in the nervous system of the Colorado potato beetle with antisera against FMRF-amide and bovine pancreatic polypeptide. Cell Tissue Res 235:303–308

  35. Walsh JH (ed) (1981) The brain-gut axis. A new frontier. Peptides 2, Suppl 2

  36. Wikgren B-JP, Gustafsson MKS, Knuts GM (1971) Primary anlage formation in diphyllobothriid tapeworms. Z Parasitenk 36:131–139

  37. Wikgren M, Reuter M, Gustafsson M (1985) Neuropeptides in free-living and parasitic flatworms. An immunocytochemical study. Dev Hydrobiol (in press)

Download references

Author information

Correspondence to Dr. Margaretha K. S. Gustafsson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gustafsson, M.K.S., Lehtonen, M.A.I. & Sundler, F. Immunocytochemical evidence for the presence of “mammalian” neurohormonal peptides in neurones of the tapeworm Diphyllobothrium dendriticum . Cell Tissue Res. 243, 41–49 (1986). https://doi.org/10.1007/BF00221850

Download citation

Key words

  • Neuropeptides
  • Serotonin
  • Diphyllobothrium dendriticum
  • Immunocytochemistry