Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Studies on Ca2+-accumulating vesicles in oocytes of the snail Helix aspersa

  • 25 Accesses

  • 3 Citations


Ultrastructural, cytochemical and autoradiographic techniques were used to study the functional significance of Ca2+-accumulating vesicles in Helix aspersa oocytes. The organic material of these vesicles is capable of adsorbing calcium ions, thus removing them from the cytosol and forming osmotically inactive complexes that are concentrated in the core. Ca2+-accumulating vesicles likely act as subcellular detoxifying compartments that sequestrate excess cytosolic Ca2+ (and plausibly other metal cations) to maintain physiologically adequate ionic concentrations.

This is a preview of subscription content, log in to check access.


  1. Abolins-Krogis A (1970) Electron microscope studies of the intracellular origin and formation of calcifying granules and calcium spherites in the hepatopancreas of the snail, Helix pomatia L. Z Zellforsch 108:501–515

  2. Borgers M, Thone F, Verheyen A, Ter Keurs HEDJ (1984) Localization of calcium in skeletal and cardiac muscle. Histochem J 16:295–309

  3. Bosabalidis AM (1987) Origin, ultrastructural estimation of the possible manners of growth and morphometric evaluation of calcium oxalate crystals in non-idioblastic parenchyma cells of Tamarix aphylla L. J Submicrosc Cytol 19:423–432

  4. Campbell AK (1983) Intracellular calcium, its universal role as regulator. John Wiley and Sons, New York

  5. Davis WL, Jones RG, Hagler HK, Farmer GR, Goodman DBP (1987) Histochemical and elemental localization of calcium in the granular cell subapical granules of the amphibian urinary bladder epithelium. Anat Rec 218:229–236

  6. Dohmen MR (1983) Gametogenesis. In: Verdonk NH, van den Biggelaar JAM, Tompa AS (eds) The Mollusca, Vol 3, Development. Academic Press, New York, pp 1–48

  7. Durfort M (1982) Las concreciones minerales del hepatopáncreas de Trachydermon cinereus, Thiele (Mollusca, Polyplacophora). Estudio ultraestructural. Iberus 2:1–17

  8. Fournié J, Chétail M (1984) Calcium dynamics in land gastropods. Am Zool 24:857–870

  9. Griffond B, Bolzoni-Sungur D (1986) Stages of oogenesis in the snail, Helix aspersa: cytological, cytochemical and ultrastructural studies. Reprod Nutr Dév 26:461–474

  10. Hill RS, Bowen ID (1976) Studies on the ovotestis of the slug Agriolimax reticulatus (Müller). I. The oocyte. Cell Tissue Res 173:465–482

  11. Howard B, Mitchell PCH, Ritchie A, Simkiss K, Taylor M (1981) The composition of intracellular granules from the metal-accumulating cells of the common garden snail (Helix aspersa). Biochem J 194:507–511

  12. Khan SR, Hackett RL (1987) Crystal-matrix relationships in experimentally induced urinary calcium oxalate monohydrate crystals, an ultrastructural study. Calcif Tissue Int 41:157–163

  13. McGee-Russell SM (1968) The method of combined observations with light and electron microscopes applied to the study of histochemical colourations in nerve cells and oocytes. In: McGee-Russell SM, Ross KFA (eds) Cell structure and its interpretation. Arnold, London, pp 183–207

  14. Medina A, Moreno FJ, López-Campos JL (1983) Sobre la organization de la glándula hermafrodita de Helix aspersa (Gastropoda, Pulmonata). I. Tejido conjuntivo y células femeninas. Morf Norm Patol A 7:759–768

  15. Moreno FJ, Hidalgo J, Piñero J, Navas P, Aijón J, López-Campos JL (1982) Tipos cellulares en la glándula digestiva de Helix aspersa (Gasterópodo, Pulmonado). Morf Norm Patol A 2:153–168

  16. Northover AM (1985) The release of membrane-associated calcium from rabbit neutrophils by fixatives. Implications for the use of antimonate staining to localize calcium. Histochem J 17:443–452

  17. Runham NW (1975) Alimentary canal. In: Fretter V, Peake J (eds) Pulmonates, Vol 1, Functional anatomy and physiology. Academic Press, London, pp 53–104

  18. Simonnet G, Rey-Cennevaz Simonnet F, Hassig R (1976) Examples of applications of radioautography for beginners with the light microscope: DNA synthesis in vivo in rat marrow, protein synthesis in vitro in reticulocytes. J Microsc Biol Cell 27:111–114

  19. Simson JAV, Spicer SS, Katsuyama T (1980) Cell membrane cation localization by pyroantimonate methods: correlation with cell function. In: Trump BF, Arstilla AU (eds) Pathobiology of cell membranes. Academic Press, New York, pp 1–39

  20. Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

  21. Steinhardt RA, Epel D, Carroll Jr EJ, Yanagimachi R (1974) Is calcium ionophore a universal activator for unfertilized eggs? Nature 252:41–43

  22. Tompa AS (1975) Embryonic use of egg shell calcium in a gastropod. Nature 255:232–233

  23. Tompa AS (1979) pH and calcium concentration changes in a molluscan egg during development. Experientia 35:812–813

  24. Tompa AS (1980) Studies on the reproductive biology of gastropods: Part III. Calcium provision and the evolution of terrestrial eggs among gastropods. J Conch 30:145–154

  25. Tompa AS, Wilbur KM (1977) Calcium mobilisation during reproduction in snail Helix aspersa. Nature 270:53–54

  26. Trump BF, Smuckler EA, Benditt EP (1961) A method for staining epoxy sections for light microscopy. J Ultrastruct Res 5:343–345

  27. Wick SM, Hepler PK (1982) Selective localization of intracellular Ca2+ with potassium antimonate. J Histochem Cytochem 30:1190–1204

Download references

Author information

Correspondence to A. Medina.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Medina, A., Griffond, B. & Sánchez-Aguayo, I. Studies on Ca2+-accumulating vesicles in oocytes of the snail Helix aspersa . Cell Tissue Res. 257, 597–601 (1989). https://doi.org/10.1007/BF00221470

Download citation

Key words

  • Calcium, localization
  • Oocytes
  • Helix aspersa (Mollusca)