Advertisement

Cell and Tissue Research

, Volume 202, Issue 3, pp 479–491 | Cite as

Fine structure of the rhombencephalic tela of the bullfrog, Rana catesbeiana

  • Patricia A. Tornheim
  • John E. Michaels
Article

Summary

The posterior rhombencephalic tela choroidea of the bullfrog was examined by electron microscopy. This membrane, the pia-ependymal roof of the caudal hindbrain, contains a large central region characterized by cuboidal ependymal cells which surround sizable microscopic apertures — the interependymal pores.

Ultrastructurally ependymal cells of this area are characterized by infrequent apical microvilli and cilia. They contain irregularly shaped nuclei and few cytoplasmic organelles that are largely apical in position. The most striking feature is an abundance of cytoplasmic filaments forming an extensive cytoskeleton. Laterally these cells are joined by numerous elaborate desmosomes. The majority of the ependymal cells have a basal lamina consisting of single, double, or triple laminae lying parallel to the basal plasma membrane.

Several unusual specializations are seen at the margins of the interependymal pores. The ependymal cells have lateral cytoplasmic processes that form the actual border of each pore. These processes originate from the apical surface of the cell and partially enclose an elaborate network of basal lamina associated with the interependymal pores.

These findings demonstrate microscopic apertures in the roof of the fourth ventricle in the bullfrog that are associated with an unusual form of supportive ependyma.

Key words

Ependyma Ultrastructure Posterior tela choroidea Rhombencephalon Rana catesbeiana 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agduhr, E.: Choroid plexus and ependyma. In: Cytology and cellular pathology of the nervous system. (W. Penfield, ed.), Vol. 2, pp. 537–573. New York: Paul B. Hoeber 1932Google Scholar
  2. Brightman, M.W.: Perivascular spaces in the brains of Necturus maculosus rafinesque and Mus norwegicus albinus. Anat. Rec. 117, 427–448 (1953)Google Scholar
  3. Brightman, M.W.: The intracerebral movement of proteins injected into blood and cerebrospinal fluid of mice. In: Progress in brain research. (A. Lajtha and D.H. Ford, eds.), Vol. 29, pp. 19–37. Amsterdam: Elsevier 1968Google Scholar
  4. Brightman, M.W., Palay, S.L.: The fine structure of ependyma in the brain of the rat. J. Cell Biol. 19, 415–439 (1963)Google Scholar
  5. Brightman, M.W., Reese, T.S.: Junctions between intimately apposed cell membranes in the vertebrate brain. J. Cell. Biol. 40, 648–677 (1969)Google Scholar
  6. Brocklehurst, G.: The structure of the rhombencephalic roof in the frog. Acta Neurochir. (Wien) 35, 205–214 (1976)Google Scholar
  7. Carpenter, S.J.: An electron microscopic study of the choroid plexuses of Necturus maculosus. J. Comp. Neurol. 127, 413–434 (1966)Google Scholar
  8. Cserr, H.F., Ostrach, C.H.: On the presence of subarachnoid fluid in the mudpuppy, Necturus maculosus. Comp. Biochem. Physiol. 48, 145–151 (1974)Google Scholar
  9. Dohrmann, G.J.: The choroid plexus: a historical review. Brain Res. 18, 197–218 (1970)Google Scholar
  10. Herrick, C.J.: The membranous parts of the brain, meninges, and their blood vessels in Amblystoma. J. Comp. Neurol. 61, 297–346 (1935)Google Scholar
  11. Jones, H.C.: Continuity between the ventricular and subarachnoid cerebrospinal fluid in an amphibian, Rana pipiens. Cell Tissue Res. 195, 153–167 (1978)Google Scholar
  12. Jones, H.C., Dolman, G.S.: The structure of the roof of the fourth ventricle in pigeon and chick brains by light and electron microscopy. J. Anat. 128, 13–29 (1979)Google Scholar
  13. Jones, H.C., Dolman, G.S., Brocklehurst, G.: The roof of the fourth ventricle in amphibian brains. J. Zool. (Lond.) 185, 341–354 (1978)Google Scholar
  14. Klika, E., Jelinek, R.: Structure of the area membranacea ventriculi IV in the chick. Z. Zellforsch. 63, 950–959 (1964)Google Scholar
  15. Kruger, L., Maxwell, D.S.: Comparative fine structure of vertebrate neuroglia: teleosts and reptiles. J. Comp. Neurol. 129, 115–142 (1967)Google Scholar
  16. Leonhardt, H., Lindemann, B.: Surface morphology of the subfornical organ in the rabbit's brain. Z. Zellforsch. 146, 243–260 (1973)Google Scholar
  17. Luft, J.H.: Improvements in epoxy resin embedding methods. J. Biophys. Biochem. Cytol. 9, 409–414 (1961)Google Scholar
  18. Maxwell, D.S., Pease, D.C.: The electron microscopy of the choroid plexus. J. Biophys. Biochem. Cytol. 2, 467–476 (1956)Google Scholar
  19. Paul, E.: Über die Typen der Ependymzellen und ihre regionale Verteilung bei Rana temporaria L. Z. Zellforsch. 80, 461–487 (1967)Google Scholar
  20. Reynolds, E.S.: The use of lead citrate at high pH as an electron opaque stain in electron microscopy. J. Cell Biol. 17, 208–212 (1963)Google Scholar
  21. Scott, D.E., Krobisch-Dudley, G., Knigge, K.M.: The ventricular system in neuroendocrine mechanisms. II. In vivo monoamine transport by ependyma of the median eminence. Cell Tissue Res. 154, 1–16 (1974)Google Scholar
  22. Tennyson, V.M., Pappas, G.D.: An electron microscope study of ependymal cells of the fetal, early postnatal and adult rabbit. Z. Zellforsch. 56, 595–618 (1962)Google Scholar
  23. Tornheim, P.A., Foltz, F.M.: Circulation of cerebrospinal fluid in the bullfrog, Rana catesbiana. Anat. Rec. 194, 389–404 (1979)Google Scholar
  24. Watson, M.L.: Staining of tissue sections for electron microscopy with heavy metals. J. Biophys. Biochem. Cytol. 4, 475–478 (1958)Google Scholar
  25. Weed, L.H.: The development of the cerebrospinal spaces in pig and in man. Contr. Embryol. Carnegie Inst. 14, 1–116 (1917)Google Scholar

Copyright information

© Springer-Verlag 1979

Authors and Affiliations

  • Patricia A. Tornheim
    • 1
  • John E. Michaels
    • 1
  1. 1.Department of AnatomyUniversity of Cincinnati College of MedicineCincinnatiUSA

Personalised recommendations