Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Cytochalasin B and water transport

A scanning electron microscope study of the toad urinary bladder

  • 12 Accesses

  • 15 Citations

Summary

A morpho-functional study of the effects of cytochalasin B (CB) on Na and water transport was made in amphibian epithelia. The functional studies confirmed the dissociation of the natriferic and hydrosmotic effects of vasopressin in toad urinary bladders exposed to CB and showed in addition that the block of the hydrosmotic effect was reversible and could still be induced in epithelia maximally stimulated with the hormone. Scanning electron microscopy revealed that CB, per se, did not alter the apical surface of the bladders. An almost total loss of microvilli of granular cells was seen, however, if CB was associated with vasopressin and an osmotic gradient. The results suggest two points: a) the block of the hydrosmotic flow induced by CB is due to factors beyond the apical membrane; b) microfilaments may be important mechanochemical transducers in the chain of events leading to the hydrosmotic effect of vasopressin.

This is a preview of subscription content, log in to check access.

References

  1. Bentzel, C.J., Hainau, B., Edelman, A., Anagnostopoulos, T., Benedetti, E.L.: Effect of plant cytokinins on microfilaments and tight junction permeability. Nature (Lond.) 264, 666–668 (1976)

  2. Bourguet, J., Chevalier, J., Hugon, J.S.: Alterations in membrane associated particle distribution during antidiuretic challenge in frog urinary bladder epithelium. Biophys. J. 16, 627–639 (1976)

  3. Brown, P.A., Feinstein, M.B., Sha'afi, R.I.: Membrane proteins related to water transport in human erythrocytes. Nature (Lond.) 254, 523–525 (1975)

  4. Carasso, N., Favard, P., Bourguet, J.: Action de la cytochalasine B sur la réponse hydrosmotique et l'ultrastructure de la vessie urinaire de la Grenouille. J. Microscopic 18, 383–400 (1973)

  5. Carter, S.B.: Effects of cytochalasins on mammalian cells. Nature (Lond.) 213, 261–264 (1967)

  6. Chevalier, J., Bourguet, J., Hugon, J.S.: Membrane associated particles: distribution in frog urinary bladder epithelium at rest and after oxytocin treatment. Cell Tiss. Res. 152, 129–140 (1974)

  7. Chevalier, J., Bourguet, J., Hugon, J.S.: Actions combinées de la colchicine et de la cytochalasine B sur la perméabilité à l'eau et la distribution des particules intramembranaires de la vessie de Grenouille. XXVIIth International Congress of Physiological Sciences, Paris. Abstracts, p. 135 (1977)

  8. Copeland, M.: The cellular response to cytochalasin B: a critical overview. Cytologia 39, 709–727 (1974)

  9. Danon, D., Strum, J.M., Edelman, I.S.: The membrane surfaces of the toad bladder: scanning and transmission electron-microscopy. J. Membrane Biol. 16, 279–295 (1974)

  10. Davis, W.L., Goodman, D.B.P., Martin, J.H., Matthews, J.L., Rasmussen, H.: Vasopressin-induced changes in the toad urinary bladder epithelial surface. J. Cell Biol. 61, 544–547 (1974 a)

  11. Davis, W.L., Goodman, D.B.P., Schuster, R.J., Rasmussen, H., Martin, J.H.: Effects of cytochalasin B on the response of toad urinary bladder to vasopressin. J. Cell Biol. 63, 986–997 (1974 b)

  12. De Sousa, R.C.: Mécanismes de transport de l'eau et du sodium par les cellules des épithélia d'amphibiens et du tubule rénal isolé. J. Physiol. (Paris) 71, 5A-71A (1975)

  13. De Sousa, R.C.: La membrane cellulaire: une frontière entre deux mondes. Schweiz. med. Wschr. 107, 1605–1612 (1977)

  14. De Sousa, R.C.: Towards a molecular definition of mechanisms and pathways of membrane transport. J. Membrane Biol. (in press)

  15. De Sousa, R.C., Grosso, A.: Effects of diphenylhydantoin on transport processes in frog skin (Rana ridibunda). Experientia (Basel) 29, 1097–1098 (1973)

  16. De Sousa, R.C., Grosso, A., Rufener, C.: Blockade of the hydrosmotic effect of vasopressin by cytochalasin B. Experientia (Basel) 30, 175–177 (1974)

  17. DiBona, D.R., Civan, M.M., Leaf, A.: The cellular specificity of the effect of vasopressin on toad urinary bladder. J. Membrane Biol. 1, 79–91 (1969)

  18. Ellis, S., Kachadorian, W.A., DiScala, V.A.: A possible role for microfilaments (MF) in vasopressin (ADH)-induced intramembranous particle aggregation in toad urinary bladder. American Society of Nephrology, 10th Annual Meeting, Washington. Abstracts, p. 104 A (1977)

  19. Ferguson, D.R., Heap, P.F.: The morphology of the toad urinary bladder: a stereoscopic and transmission electron microscopical study. Z. Zellforsch. 109, 297–305 (1970)

  20. Hays, R.M.: Antidiuretic hormone. New Engl. J. Med. 295, 659–665, 1976

  21. Hays, R.M., Levine, S.D.: Vasopressin. Kidney International 6, 307–322 (1974)

  22. Humbert, F., Montesano, R., Grosso, A., De Sousa, R.C., Orci, L.: Particle aggregates in plasma and intracellular membranes of toad bladder (granular cell). Experientia (Basel) 33, 1364–1367 (1977)

  23. Kachadorian, W.A., Levine, S.D., Wade, J.B., DiScala, V.A., Hays, R.M.: Relationship of aggregated intramembranous particles to water permeability in vasopressin-treated toad urinary bladder. J. clin. Invest. 59, 576–581 (1977 a)

  24. Kachadorian, W.A., Wade, J.B., DiScala, V.A.: Vasopressin: induced structural change in toad bladder luminal membrane. Science 190, 67–69 (1975)

  25. Kachadorian, W.A., Wade, J.B., Uiterwyk, C.C., DiScala, V.A.: Membrane structural and functional responses to vasopressin in toad bladder. J. Membrane Biol. 30, 381–401 (1977 b)

  26. Knutton, S., Jackson, D., Graham, J.M., Micklem, K.J., Pasternak, C.A.: Microvilli and cell swelling. Nature (Lond.) 262, 52–54 (1976)

  27. Levine, S., Franki, N., Hays, R.M.: Effect of phloretin on water and solute movement in the toad bladder. J. clin. Invest. 52, 1435–1442 (1973)

  28. Pietras, R.J., Naujokaitis, P.J., Szego, C. M.: Differential effects of vasopressin on the water, calcium and lysosomal enzyme contents of mitochondria-rich and lysosome-rich (granular) epithelial cells isolated from bullfrog urinary bladder. Mol. Cell. Endocrinol. 4, 89–106 (1976)

  29. Pietras, R.J., Seeler, B.J., Szego, C.M.: Influence of antidiuretic hormone on release of lysosomal hydrolase at mucosal surface of epithelial cells from urinary bladder. Nature (Lond.) 257, 493–495 (1975)

  30. Pietras, R.J., Wright, E.M.: The membrane action of antidiuretic hormone (ADH) on toad urinary bladder. J. Membrane Biol. 22, 107–123 (1975)

  31. Pinto Da Silva, P.: Membrane intercalaled particles in human erythrocyte ghosts: sites of preferred passage of water molecules at low temperature. Proc. nat. Acad. Sci. (Wash.) 70, 1339–1343 (1973)

  32. Pratley, J.N., McQuillen, N.K.: The role of microfilaments in frog skin ion transport. J. Cell Biol. 56, 850–857 (1973)

  33. Rüphi, M., De Sousa, R.C., Favrod-Coune, E., Posternak, J.M.: Optical method measuring water flow with automatic recording. Experientia (Basel) 28, 1391–1393 (1972)

  34. Sanger, J.W., Holtzer, H.: Cytochalasin B: effects on cell morphology, cell adhesion, and mucopolysaccharide synthesis. Proc. nat. Acad. Sci. (Wash.) 69, 253–257 (1972)

  35. Singer, S.J., Nicolson, G.L.: The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972)

  36. Spinelli, F., Grosso, A., De Sousa, R.C.: The hydrosmotic effect of vasopressin: a scanning electron-microscope study. J. Membrane Biol. 23, 139–156 (1975)

  37. Taylor, A.: Role of microtubules and microfilaments in the action of vasopressin. In: Disturbances in body fluid osmolality. Ed. by Thomas Andreoli, Jared J. Grantham, Floyd C. Rector, Jr., p. 97.: American Physiological Society 1977

  38. Taylor, A., Maffly, R., Wilson, L., Reaven, E.: Evidence for involvement of microtubules in the action of vasopressin. Ann. N.Y. Acad. Sci. 253, 723–737 (1975)

  39. Taylor, A., Mamelak, M., Reaven, E., Maffly, R.: Vasopressin: possible role of microtubules and microfilaments in its action. Science 181, 347–350 (1973)

  40. Wade, J.B.: Membrane structural specialization of the toad urinary bladder revealed by the freeze-fracture technique. III. Location, structure and vasopressin dependence of intramembrane particle arrays. J. Membrane Biol. (in press)

  41. Wade, J.B., Kachadorian, W.A., DiScala, V.A.: Freeze-fracture electron microscopy: relationship of membrane structural features to transport physiology. Amer. J. Physiol. 232, F77-F83 (1977)

Download references

Author information

Correspondence to R. C. de Sousa.

Additional information

Supported by the grants Nos 3.1300.73 and 3.043-0.76 of the Swiss National Science Foundation

The authors are grateful to Miss C. Brücher, SEM operator of the Department of Physics, Ciba-Geigy, for skillful collaboration, to Mr. R. Mira for the illustrations and to Mrs. A. Cergneux for secretarial assistance

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Grosso, A., Spinelli, F. & de Sousa, R.C. Cytochalasin B and water transport. Cell Tissue Res. 188, 375–388 (1978). https://doi.org/10.1007/BF00219779

Download citation

Key words

  • Urinary bladder
  • Skin
  • Toad, frog
  • Water flow
  • Na transport
  • Vasopressin
  • Cytochalasin B
  • Microfilaments
  • Scanning electron microscopy