Springer Nature is making SARS-CoV-2 and COVID-19 research free View research | View latest news | Sign up for updates

Neuronal connectivity patterns in the compound eyes of Artemia salina and Daphnia magna (Crustacea: Branchiopoda)

  • 136 Accesses

  • 28 Citations


The neuronal types and patterns in the visual system of the species Artemia salina and Daphina magna have been studied with the Golgi method and electron microscopy. The lamina contains five classes of neurons: photoreceptor axons, monopolar, centrifugal, tangential and amacrine neurons. The terminals of the receptor axons are distributed in two (A. salina) or three (D. magna) layers. The dilated terminals have an extensive and wide array of fine branches. One axon from each ommatidium bypasses the lamina and terminates in the medulla in A. salina. A. salina has four types of monopolar neurons, two of which are stratified, whereas in D. magna only two types are found, one of which is bistratified. Tangential T-neurons connect the lamina with the protocerebrum. D. magna has in addition one tangential T-neuron connecting both the lamina and the medulla with the protocerebrum. In both species monopolar-type centrifugal neurons connect the medulla and the lamina, whereas that of A. salina has a wide laminar distribution. Both species also have amacrine cells in the lamina. The medulla contains, besides those shared with the lamina, transmedullary neurons (two types in A. salina), amacrine cells and neurons originating in the protocerebrum.

“Cartridge”-type synaptic compartments are lacking in the investigated species, although a periodic arrangement is discernible in the distal portion of the lamina of A. salina. The receptors from three types of specialized contacts in Artemia, one of which involves a dyad. D. magna has only one-to-one synapses. Neurosecretory fibres are absent in A. salina.

This is a preview of subscription content, log in to check access.


  1. Aramant, R., Elofsson, R.: Distribution of monoaminergic neurons in the nervous system of non-malacostracan crustaceans. Cell Tiss. Res. 166, 1–24 (1976)

  2. Chi, C., Carlson, S.D.: High voltage electron microscopy of the optic neuropile of the housefly, Musca domestica. Cell Tiss. Res. 167, 537–545 (1976)

  3. Debaisieux, P.: Les yeux de Crustacés: structure, développement, réactions a l'éclairement. Cellule 50, 9–122 (1944)

  4. Elofsson, R., Nässel, D., Myhrberg, H.: A catecholaminergic neuron connecting the first two optic neuropiles (lamina ganglionaris and medulla externa) of the crayfish Pacifastacus leniusculus. Cell Tiss. Res. 182, 287–297 (1977)

  5. Elofsson, R., Odselius, R.: The anostracan rhabdom and the basement membrane. An ultrastructural study of the Artemia compound eye (Crustacea). Acta zool. 56, 141–153 (1975)

  6. Frost, B.J.: Eye movements in Daphnia pulex (de Geer). J. exp. Biol. 62, 175–187 (1975)

  7. Güldner, F.-H., Wolff, J.R.: Über die Ultrastruktur des Komplexauges von Daphnia pulex. Z. Zellforsch. 104, 259–274 (1970)

  8. Hafner, G.S.: The neuronal organization of the lamina ganglionaris in the crayfish: A Golgi and EM study. J. comp. Neurol. 152, 255–280 (1973)

  9. Hanström, B.: Vergleichende Anatomie des Nervensystems der wirbellosen Tiere. Berlin: Springer 1928

  10. Karnovsky, M.J.: A formaldehyde-glutaraldehyde fixative of high osmolarity for use in electron microscopy. J. Cell Biol. 27, 137 A (1965)

  11. Kunze, P.: Histologische Untersuchungen zum Bau des Auges von Ocypode cursor (Brachyura). Z. Zellforsch. 82, 466–478 (1967)

  12. Leder, H.: Untersuchungen über den feineren Bau des Nervensystems der Cladoceren. Arb. zool. Inst. Univ. Wien u. Triest 20, 297–392 (1915)

  13. Macagno, E.R., Levinthal, C.: Computer reconstruction of the cellular architecture of the Daphnia magna optic ganglion. In: 33rd Ann. Proc. Electron Microscopy Soc. Amer., Las Vegas, Nevada (G.W. Bailey, ed.), pp. 284–285 (1975)

  14. Macagno, E.R., Lopresti, V., Levinthal, C.: Structure and development of neural connections in isogenic organisms: Variations and similarities in the optic system of Daphnia magna. Proc. nat. Acad. Sci. (Wash.) 70, 57–61 (1973)

  15. Meyer-Rochow, V.B.: Larval and adult eye of the western rock lobster (Panulirus longipes). Cell Tiss. Res. 162, 439–457 (1975)

  16. Nässel, D.R.: The organization of the lamina ganglionaris of the prawn, Pandalus borealis(Kröyer). Cell Tiss. Res. 163, 455–464 (1975)

  17. Nässel, D.R.: The retina and retinal projection on the lamina ganglionaris of the crayfish Pacifastacus leniusculus (Dana). J. comp. Neurol. 167, 341–360 (1976a)

  18. Nässel, D.R.: The fine structure of photoreceptor terminals in the compound eye of Pandalus borealis (Crustacea). Acta zool. 57, 153–160 (1976b)

  19. Nässel, D.R.: Types and arrangements of neurons in the crayfish optic lamina. Cell Tiss. Res. 179, 45–75 (1977)

  20. Nässel, D.R., Waterman, T.H.: Golgi EM evidence for visual information channelling in the crayfish lamina ganglionaris. Brain Res. 130, 556–563 (1977)

  21. Retzius, G.: Zur Kenntnis der Nervensystems der Daphniden. Biol. Unters. N.F. 13, 107–116 (1906)

  22. Röhlich, P., Törö, I.: Fine structure of the compound eye of Daphnia in normal, dark and strongly light- adapted state. In: The structure of the eye. II. Symp. (J.W. Rohen, ed.). Stuttgart: Schattauer 1965

  23. Seifert, R.: Raumorientierung und Phototaxis der Anostracen Euphyllopoden. Z. vergl. Physiol. 16, 111–184 (1932)

  24. Spurr, A.R.: A low-viscosity epoxy resin embedding medium for electron microscopy. J. Ultrastruct. Res. 26, 31–43 (1969)

  25. Stowe, S., Ribi, W.A., Sandeman, D.C.: The organisation of the lamina ganglionaris of the crabs Scylla serrata and Leptograpsus variegatus. Cell Tiss. Res. 178, 517–532 (1977)

  26. Strausfeld, N.J.: Atlas of an insect brain. Berlin-Heidelberg-New York: Springer 1976

  27. Strausfeld, N.J., Blest, A.D.: Golgi studies on insects. Part I. The optic lobes of Lepidoptera. Phil. Trans. B 258, 81–134 (1970)

  28. Trujillo-Cenóz, O., Melamed, J.: Light- and electronmicroscope study of one of the systems of centrifugal fibres found in the lamina of muscoid flies. Z. Zellforsch. 110, 336–349 (1970)

  29. Waterman, T.H.: Polarotaxis and primary photoreceptor events in Crustacea. In: The functional organisation of the compound eye (C.G. Bernhard, ed.). Oxford & New York: Pergamon Press 1966

  30. Wolff, J.R., Güldner, F.-H.: Über die Ultrastruktur des “Nervus opticus” und des Ganglion opticum I von Daphnia pulex. Z. Zellforsch. 103, 526–543 (1970)

  31. Young, S.: Directional differences in the colour sensitivity of Daphnia magna. J. exp. Biol. 61, 261–267 (1974)

  32. Young, S., Downing, A.C.: The receptive fields of Daphnia ommatidia. J. exp. Biol. 64, 185–202 (1976)

  33. Zawarzin, A.: Histologische Studien über Insekten. IV. Die optischen Ganglien der Aeschna-Lurven. Z. wiss. Zool. 108, 175–257 (1913)

Download references

Author information

Correspondence to Dr. Rolf Elofsson.

Additional information

The investigation was supported by the Swedish Natural Science Research Council (Grant No. 2760-009)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Nässel, D.R., Elofsson, R. & Odselius, R. Neuronal connectivity patterns in the compound eyes of Artemia salina and Daphnia magna (Crustacea: Branchiopoda). Cell Tissue Res. 190, 435–457 (1978). https://doi.org/10.1007/BF00219557

Download citation

Key words

  • Compound eyes
  • Crustacea
  • Neurons
  • Golgi method