Advertisement

Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Shock interactions in the outer heliosphere

Abstract

Observations of plasma and magnetic fields by Pioneer 10 and 11 and Voyager 1 and 2 reveal that MHD shocks are an important component of the large-scale solar wind structures in the outer heliosphere. This review discusses recent progress in simulation studies of the nonlinear evolution of the solar wind structures, and in particular concentrates on the theoretical development and applications of the shock interactions model. Various stream propagation models, which do not use the Rankine-Hugoniot relations to calculate the jump conditions at shock crossings, have been used to simulate the essential evolution process of isolated streams and the formation and propagation of corotating and transient shocks. They produce fairly good results in the region up to a few AU. In 1984, the shock interactions model was introduced to study the evolution of large-scale solar wind structures in the region outside 1 AU up to several tens of AU. The model uses the exact Rankine-Hugoniot relations to calculate the shock speed and shock strength at all shock crossings. So that the model can more accurately calculate the shock speeds and the accumulated irreversible shock heating of plasma at several tens of AU. The applications of the shock interactions model are presented in three groups. (a) The first group covers the basic interaction of a shock with the ambient solar wind, the formation and propagation of shock pairs, and the collision and merging of shocks. (b) The second group covers the use of the shock interactions model to simulate the nonlinear evolution of large-scale solar wind structures in the outer heliosphere. These simulation results can provide the detailed evolution process for large-scale solar wind structures in the vast region not directly observed. Two selected studies are reported. (c) Finally, the shock interactions model is applied to studying the heating of the solar wind in the outer heliosphere. The model calculations support shocks being chiefly responsible for the heating of the solar wind plasma in the outer heliosphere at least up to 30 AU.

This is a preview of subscription content, log in to check access.

References

  1. Axford, W. I.: 1972, NASA Spec. Publ. SP-308, 609.

  2. Bazer, J. and Ericson, W. B.: 1959, Astrophys. J. 129, 758.

  3. Burlaga, L. F.: 1983, J. Geophys. Res. 88, 6085.

  4. Burlaga, L. F.: 1985, Space Sci. Rev. 39, 255.

  5. Burlaga, L. F.: 1988a, in V. J. Pizzo et al. (eds.), Proceedings of Sixth International Solar Wind Conference, Tech. Note 306, Natl. Cent. for Atmos. Res., Boulder, Colo., p. 547.

  6. Burlaga, L. F.: 1988b, J. Geophys. Res. 93, 4103.

  7. Burlaga, L. F. and Barouch, E.: 1976, Astrophys. J. 203, 257.

  8. Burlaga, L. F. and Mish, W. H.: 1987, J. Geophys. Res. 92, 1261.

  9. Burlaga, L. F. and Ness, N. F.: 1968, Can. J. Phys. 46, S962.

  10. Burlaga, L. F. and Ogilvie, K. W.: 1970, Astrophys. J. 159, 659.

  11. Burlaga, L. F., Schwenn, R., and Rosenbauer, H.: 1983, Geophys. Res. Letters 10, 413.

  12. Burlaga, L. F., Klein, L., Lepping, R. P., and Behannon, K. W.: 1984, J. Geophys. Res. 89, 10659.

  13. Burlaga, L. F., Mish, W. H., and Whang, Y. C.: 1990, J. Geophys. Res. 95, 4247.

  14. Coleman, P. J. Jr.: 1968, Astrophys. J. 153, 371.

  15. Collard, H. R. and Wolfe, J. H.: 1974, in C. T. Russell (ed.), Solar Wind Three, University of California Press, California, p. 281.

  16. Collard, H. R., Mihalov, J. D., and Wolfe, J. H.: 1982, J. Geophys. Res. 87, 2203.

  17. Courant, R. and Friedrichs, K. O.: 1948, Supersonic Flow and Shock Waves, Interscience, New York, pp. 175–178.

  18. Dryer, M. and Steinolfson, R. S.: 1976, J. Geophys. Res. 81, 5413.

  19. Dryer, M., Candelaria, C., Smith, Z. K., Steinolfson, R. S. Smith, E. J., Wolfe, J. H., Mihalov, J. D., and Rosenau, P.: 1978a, J. Geophys. Res. 83, 532.

  20. Dryer, M., Smith, Z. K., Smith, E. J., Mihalov, J. D., Wolfe, J. H., Steinolfson, R. S., and Wu, S. T.: 1978b, J. Geophys. Res. 83, 4347.

  21. Gazis, P. R. and Lazarus, A. J.: 1982, Geophys. Res. Letters 9, 431.

  22. Gazis, P. R. and Lazarus, A. J.: 1983, Solar Wind Five, NASA Conf. Publ., CP 2280, pp. 509–519.

  23. Goldstein, B. E. and Jokipii, J. R.: 1977, J. Geophys. Res. 82, 1095.

  24. Gosling, J. T., Pizzo, V., Neugebauer, M., and Snyder, C. W.: 1972, J. Geophys. Res. 77, 2744.

  25. Gosling, J. T., Hundhausen, A. J., and Bame, S. J.: 1976, J. Geophys. Res. 81, 2111.

  26. Hakamada, K. and Akasofu, S.-I.: 1982, Space Sci. Rev. 31, 3.

  27. Heifer, H. L.: 1953, Astrophys. J. 117, 177.

  28. Holzer, T. E.: 1972, J. Geophys. Res. 77, 5407.

  29. Hundhausen, A. J.: 1972, Coronal Expansion and Solar Wind, Springer-Verlag, New York.

  30. Hundhausen, A. J.: 1973a, J. Geophys. Res. 78, 1528.

  31. Hundhausen, A. J.: 1973b, J. Geophys. Res. 78, 2035.

  32. Hundhausen, A. J.: 1977, Coronal Holes and High Speed Streams, Colorado Associated University Press, Boulder, p. 225.

  33. Hundhausen, A. J. and Gentry: 1969, J. Geophys. Res. 74, 6229.

  34. Hundhausen, A. J. and Gosling, J. T.: 1976, J. Geophys. Res. 81, 1436.

  35. Isenberg, P. A.: 1986, J. Geophys. Res. 91, 9965.

  36. Isenberg, P. A., Chih, P. P., and Fisk, L. A.: 1985, J. Geophys. Res. 90, 12040.

  37. Jokipii, J. R. and Davis, L. Jr.: 1969, Astrophys. J. 156, 1101.

  38. Kayser, S. E., Barnes, A., and Mihalov, J. D.: 1984, Astrophys. J. 285, 339.

  39. Kulikovskii, A. G. and Lynbimov, G. A.: 1962, Magnetohydrodynamics, State Physics and Mathematics Press, Moscow, p. 96.

  40. Lax, P. D. and Wendroff, B.: 1960, Commun. Pure Appl. Math. 13, 217.

  41. Lust, R.: 1955, Z. Naturforsch. 10a, 125.

  42. Lynn, Y. M.: 1966, Phys. Fluids 9, 314.

  43. Matsuda, T. and Sakurai, T.: 1972, Cosmic Electrodynamics 3, 97.

  44. Mihalov, J. D. and Wolfe, J. H.: 1978, Solar Phys. 60, 399.

  45. Neugebauer, M. and Snyder, C. W.: 1966, J. Geophys. Res. 71, 4469.

  46. Olmsted, C. S. and Akasofu, S.-I.: 1985, Planetary Space Sci. 33, 831.

  47. Pizzo, V. J.: 1978, J. Geophys. Res. 83, 5563.

  48. Pizzo, V. J.: 1980, J. Geophys. Res. 85, 727.

  49. Pizzo, V. J.: 1982, J. Geophys. Res. 87, 4374.

  50. Pizzo, V. J.: 1983, in M. Neugebauer (ed.), Solar Wind Five, NASA Conf. Publ., NASA CP-2280, pp. 675–691.

  51. Smith, E. J. and Wolfe, J. H.: 1976, Geophys. Res. Letters 3, 137.

  52. Smith, E. J. and Wolfe, J. H.: 1977, in M. A. Shea (ed.), Study of Travelling Interplanetary Phenomena, D. Reidel Publ. Co., Dordrecht, Holland, pp. 227–257.

  53. Smith, Z. K., Dryer, M., Fillius, R. W., Smith, E. J., and Wolfe, J. H.: 1981, J. Geophys. Res. 86, 6773.

  54. Smith, Z. K., Dryer, M., and Steinolfson, R. S.: 1985, J. Geophys. Res. 90, 217.

  55. Steinolfson, R. S. and Dryer, M.: 1978, J. Geophys. Res. 83, 1576.

  56. Steinolfson, R. S., Dryer, M., and Nakagawa, Y.: 1975, J. Geophys. Res. 80, 1223.

  57. Tu, C. Y.: 1987, Solar Phys. 109, 149.

  58. Tu, C. Y.: 1988a, J. Geophys. Res. 93, 7.

  59. Tu, C. Y.: 1988b, in V. J. Pizzo et al. (eds.), Proceedings of Sixth International Solar Wind Conference, Tech. Note 306, Natl. Cent. for Atmos. Res., Boulder, Colo., p. 593.

  60. Volkmer, P. M. and Neubauer, F. M.: 1984, Ann. Geophys. 3, 1.

  61. Von Neumann, J. and Richtmyer, R. D.: 1950, J. Appl. Phys. 21, 232.

  62. Whang, Y. C.: 1973, J. Geophys. Res. 78, 7221.

  63. Whang, Y. C.: 1980, J. Geophys. Res. 85, 2285.

  64. Whang, Y. C.: 1984, J. Geophys. Res. 89, 7367.

  65. Whang, Y. C.: 1987, J. Geophys. Res. 92, 4349.

  66. Whang, Y. C. and Burlaga, L. F.: 1985a, J. Geophys. Res. 90, 221.

  67. Whang, Y. C. and Burlaga, L. F.: 1985b, J. Geophys. Res. 90, 10765.

  68. Whang, Y. C. and Burlaga, L. F.: 1986, J. Geophys. Res. 91, 13341.

  69. Whang, Y. C. and Burlaga, L. F.: 1988, J. Geophys. Res. 93, 5446.

  70. Whang, Y. C. and Burlaga, L. F.: 1990, J. Geophys. Res. 95 (in press).

  71. Whang, Y. C. and Chien, T. H.: 1981, J. Geophys. Res. 86, 3263.

  72. Whang, Y. C., Behannon, K. W., Burlaga, L. F., and Zhang, S.: 1989, J. Geophys. Res. 94, 2345–2364.

  73. Whang, Y. C., Liu, S. L., and Burlaga, L. F.: 1990, J. Geophys. Res. 95 (in press).

  74. Wilcox, J. M. and Ness, N. F.: 1965, J. Geophys. Res. 70, 5793.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Whang, Y.C. Shock interactions in the outer heliosphere. Space Sci Rev 57, 339–388 (1991). https://doi.org/10.1007/BF00216047

Download citation

Keywords

  • Solar Wind
  • Nonlinear Evolution
  • Solar Wind Plasma
  • Shock Strength
  • Shock Speed