Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On the coordination of motor output during visual flight control of flies


In tethered flying houseflies (Musca domestica), the yaw torque produced by the wings is accompanied by postural changes of the abdomen and hindlegs. In free flight, these body movements would jointly lead to turning manoeuvres of the animal. By recording the yaw torque together with the lateral deflections of either the abdomen or the hindlegs, it is shown that these motor output systems act in a highly synergistic way during two types of visual orientation behavior, compensatory optomotor turning reactions and orientation turns elicited by moving objects. This high degree of coordination is particularly conspicuous for the pathway activated by moving objects. Here, orientation responses either may be induced or may fail to be generated always simultaneously in all three motor output systems. This suggests that the pathway mediating orientation turns towards objects is gated before it segregates into the respective motor control systems of the wings, the abdomen and the hindlegs.

This is a preview of subscription content, log in to check access.


  1. Arbas EA (1986) Control of hindlimb posture by wind-sensitive hairs and antennae during locust flight. J Comp Physiol A 159:849–857

  2. Baader A (1990) The posture of the abdomen during locust flight: Regulation by steering and ventilatory interneurones. J Exp Biol 151:109–131

  3. Bausenwein B, Wolf R, Heisenberg M (1986) Genetic dissection of optomotor behavior in Drosophila melanogaster. Studies on wild-type and the mutant optomotor-blind H31. J Neurogenetics 3:87–109

  4. Camhi JM (1970) Yaw-correcting postural changes in locusts. J Exp Biol 52:519–531

  5. Egelhaaf M (1985a) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. I. Behavioural constraints imposed on the neuronal network and the role of the optomotor system. Biol Cybern 52:123–140

  6. Egelhaaf M (1985b) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. II. Figure-Detection Cells, a new class of visual interneurones. Biol Cybern 52:195–209

  7. Egelhaaf M (1985c) On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. III. Possible input circuitries and behavioural significance of the FD-Cells. Biol Cybern 52:267–280

  8. Egelhaaf M (1987) Dynamic properties of two control systems underlying visually guided turning in house-flies. J Comp Physiol A 161:777–783

  9. Egelhaaf M (1989) Visual afferences to flight steering muscles controlling optomotor response of the fly. J Comp Physiol A 165:719–730

  10. Egelhaaf M (1990) Spatial interactions in the fly visual system leading to selectivity for small-field motion. Naturwissenschaften 77:182–185

  11. Egelhaaf M, Borst A (1990a) Bewegungswahrnehmung und visuelle Orientierung bei Fliegen. Naturwissenschaften 77:366–377

  12. Egelhaaf M, Borst A (1991) Motion computation and visual orientation in flies. In: Barnes WJP (ed) Sensory guidance in arthropod behaviour. Manchester University Press, Manchester, in press

  13. Egelhaaf M, Hausen K, Reichardt W, Wehrhahn C (1988) Visual course control in flies relies on neuronal computation of object and background motion. Trends Neurosci 11:351–358

  14. Fermi G, Reichardt W (1963) Optomotorische Reaktionen der Fliege Musca domestica. Abhängigkeit der Reaktion von der Wellenlänge, der Geschwindigkeit, dem Kontrast und der mittleren Leuchtdichte bewegter periodischer Muster. Kybernetik 2:15–28

  15. Geiger G, Nässel DR (1982) Visual processing of moving single objects and wide-field patterns in flies: Behavioural analysis after laser-surgical removal of interneurons. Biol Cybern 44:141–149

  16. Geiger G, Poggio T (1977) On head and body movements of flying flies. Biol Cybern 25:177–180

  17. Gronenberg W, Strausfeld NJ (1990) Descending neurons supplying the neck and flight motor of Diptera: Physiological and anatomical characteristics. J Comp Neurol 302:973–991

  18. Götz KG (1964) Optomotorische Untersuchung des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2:77–92

  19. Götz KG (1983a) Genetischer Abbau der visuellen Orientierung bei Drosophila. Verh Dtsch Zool Ges 76:83–99

  20. Götz KG (1983b) Bewegungssehen und Flugsteuerung bei der Fliege Drosophila. In: Nachtigall W (ed) BIONA report. Akademie Wissenschaften Literatur Mainz, G Fischer, Mainz Stuttgart New York, pp 21–34

  21. Götz KG, Hengstenberg B, Biesinger R (1979) Optomotor control of wing beat and body posture in Drosophila. Biol Cybern 35:101–112

  22. Hausen K (1982a) Motion sensitive interneurons in the optomotor system of the fly. I. The Horizontal Cells: Structure and signals. Biol Cybern 45:143–156

  23. Hausen K (1982b) Motion sensitive interneurons in the optomotor system of (the fly). II. The Horizontal Cells: Receptive field organization and response characteristics. Biol Cybern 46:67–79

  24. Hausen K, Wehrhahn C (1990) Neural circuits mediating visual flight in flies. II. Separation of two control systems by microsurgical brain lesions. J Neurosci 10:351–360

  25. Heide G (1971) Die Funktion der nicht-fibrillären Flugmuskeln von Calliphora. Teil II: Muskuläre Mechanismen der Flugsteuerung und ihre nervöse Kontrolle. Zool Jb Physiol 76:99–137

  26. Heide G (1974) The influence of wingbeat synchronous feedback on the motor output systems in flies. Z Naturforsch 29c:739–744

  27. Heide G (1975) Properties of a motor output system involved in the optomotor response in flies. Biol Cybern 20:99–112

  28. Heide G (1983) Neural mechanisms of flight control in Diptera. In: Nachtigall W (ed) BIONA report. Akad Wissenschaften Literatur Mainz. G Fischer, Mainz Stuttgart New York, pp 35–52

  29. Heisenberg M, Wolf R (1984) Vision in Drosophila. Springer, Berlin Heidelberg New York, Tokyo

  30. Milde JJ, Strausfeld NJ (1990) Cluster organization and response characterictics of the giant fiber pathway of the blowfly Calliphora erythrocephala. J Comp Neurol 294:59–75

  31. Reichardt W, Egelhaaf M, Guo A (1989) Processing of figure and background motion in the visual system of the fly. Biol Cybern 61:327–345

  32. Reichert H, Rowell CHF (1985) Integration of nonphaselocked exteroceptive information in the control of rhythmic flight in the locust. J Neurophysiol 53:1201–1218

  33. Reichert H, Rowell CHF, Griss C (1985) Course correction circuitry translates feature detection into behavioural action in locusts. Nature 315:142–144

  34. Rowell CHF (1988) Mechanisms of flight steering in locusts. Experientia 44:389–395

  35. Strausfeld NJ (1989) Beneath the compound eye: Neuroanatomical analysis and physiological correlates in the study of insect vision. In: Stavenga DG, Hardie RC (eds) Facets of vision. Springer, Berlin Heidelberg New York, pp 317–359

  36. Strausfeld NJ, Gronenberg W (1990) Descending neurons supplying the neck and flight motor of Diptera: Organization and neuroanatomical relationships with visual pathways. J Comp Neurol 302:954–972

  37. Zanker JM (1988) How does lateral abdomen deflection contribute to flight control of Drosophila melanogaster? J Comp Physiol A 162:581–588

  38. Zanker JM (1990) The wing beat of Drosophila melanogaster III. Control. Phil Trans R Soc Lond B 327:45–64

  39. Zanker JM, Götz KG (1990) The wing beat of Drosophila melanogaster II. Dynamics. Phil Trans R Soc Lond B 327:19–44

  40. Zanker JM, Quenzer T (1988) Abdominal deflections elicited by stripe movement. In: Elsner N, Barth FG (eds) Sense organs: Interfaces between environment and behaviour. G Thieme, Stuttgart New York, pp 132

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Zanker, J.M., Egelhaaf, M. & Warzecha, A. On the coordination of motor output during visual flight control of flies. J Comp Physiol A 169, 127–134 (1991).

Download citation

Key words

  • Visual orientation
  • Optomotor response
  • Motor control
  • Fly
  • Motion