Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Layer V pyramidal cells in the adult human cingulate cortex

A quantitative Golgi-study

  • 95 Accesses

  • 19 Citations

Abstract

The anterior and posterior parts of the human cingulate cortex differ in their absolute number of neurons per unit volume, with fewer neurons in the anterior part. To test the hypothesis that lower absolute number and packing density of neurons in the anterior cingulate cortex are associated with an increased complexity in the neuropil compartment, dendritic arborizations of layer V neurons in both cingulate parts were analyzed in a Golgi study. Results show that these neurons in the anterior cingulate cortex have more primary and secondary basal dendrites than those in the posterior cingulate cortex. This establishes an association of a higher complexity of the dendritic arborization in the anterior cingulate cortex with a lower cell number per unit volume and larger neuropil compartment. The significant lower degree of dendritic arborization in the posterior cingulate cortex is accompanied by a higher cell packing density. These structural differences are associated with functional differences between the two parts of the human cingulate cortex.

This is a preview of subscription content, log in to check access.

References

  1. Armstrong E, Parker B (1986) A new Golgi method for adult human brains. J Neurosci Methods 17:247–254

  2. Baleydier C, Mauguier F (1980) The duality of the cingulate gyrus in monkey. Brain 103:525–554

  3. Baleydier C, Mauguier F (1987) Network organization of the connectivity between parietal area 7, posterior cingulate cortex and medial pulvinar nucleus: a double fluorescent tracer study in monkey. Exp Brain Res 66:385–393

  4. Berry M, Hollingworth T, Flinn RM, Andersen EM (1972) Dendritic field analysis — a reappraisal, T.I.T.J. Life Sci 2:129–140

  5. Blinkov SM, Glezer II (1968) Das Zentralnervensystem in Zahlen und Tabellen. Fischer, Jena

  6. Braitenberg V, Guglielmotti V, Sada E (1967) Correlation of crystal growth with the staining of axons by the Golgi procedure. Stain Technol 42:277–283

  7. Brodmann K (1909) Vergleichende Lokalisationslehre der Gross-hirnrinde in ihren Prinzipien dargestellt auf Grund des Zellenbaues. Barth, Leipzig

  8. Brody H (1955) Organization of the cerebral cortex. III. A study of aging in the human cerebral cortex. J CompNeurol 102:511–556

  9. Buell SJ (1982) Golgi-Cox and rapid Golgi methods as applied to autopsied human brain tissue: widely disparate results. J Neuropathol Exp Neurol 41:500–507

  10. Coleman PD, Riesen AH (1968) Environmental affects on cortical dendritic fields. I. Rearing in the dark. J Anat 102:363–374

  11. De Voogd TJ, Chang FLF, Fleeter MK, Jencius MJ, Greenough WT (1981) Distortions induced in neuronal quantification by camera-lucida analysis: comparisons using a semi-automated data acquisition system. J Neurosci Methods 3:285–294

  12. Econome C von, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Wien Berlin

  13. Feldman NL, Peters A (1979) A technique for estimating total spine numbers on Golgi impregnated dendrites. J Comp Neurol 188:527–542

  14. Foh E, Haug H, Koenig M, Rast A (1973) Quantitative Bestimmung zum feineren Aufbau der Sehrinde der Katze, zugleich ein methodischer Beitrag zur Messung des Neuropils. Microsc Acta 75:148–168

  15. Globus A, Scheibel AB (1967a) Pattern and field in cortical structure: the rabbit. J Comp Neurol 131:155–172

  16. Globus A, Scheibel AB (1967b) Synaptic loci on visual cortical neurons of the rabbit: the specific afferent radiation. Exp Neurol 18:116–131

  17. Golgi C (1873) Sulla struttura della sostanza grigia dell cervello. Gass Med Ital Lombarda 33:244–246

  18. Haug H, Rebhan J (1956) Der Grauzellkoeffizient der menschlichen Hirnrinde. Berechnungen nach dem Zahlenmaterial v. Econo mo's. Acta Anat 28:259–287

  19. Haug H, Kuehl S, Mecke E, Sass NL, Wasner K (1984) The significance of morphometric procedures in the investigation of age changes in cytoarchitectonic structures of human brain. J Hirnforsch 4:353–374

  20. Hollingworth T, Berry M (1975) Network analysis of dendritic fields of pyramidal cells in neocortex and Purkinje cells in the cerebellum of the rat. Philos Trans R Soc Lond [Biol] 270:227–264

  21. Horsfield K, Dart G, Olson DE, Filley GF, Cumming G (1971) Models of the human bronchial tree. J Appl Physiol 31:207–217

  22. Kok LP, Boon ME (1990) Microwaves for microscopy. J Microsc 158:291–322

  23. Landas S, Phillips MI (1982) Staining of human and rat brain vibratome sections by a new Golgi method. J Neurosci Methods 5:147–151

  24. Marin-Padilla M (1967) Number and distribution of the apical dendritic spines of the layer V pyramidal cells in man. J Comp Neurol 177:159–172

  25. Marin-Padilla M (1969) Origin of the pericellular baskets of the pyramidal cells of the human motor cortex: a Golgi study. Brain Res 14:633–646

  26. McMullen N, Glaser EM, Tagamets M (1984) Morphometry of spine-free nonpyramidal neurons in rabbit auditory cortex. J Comp Neurol 222:383–395

  27. Mehraein P, Yamada M, Tranowska-Dzidoszko E (1975) Quantitative study of dendrites and dendritic spines in Alzheimer's disease and senile dementia. In: Kreutzberg GW (ed) Advances in neurology 12. Raven Press, New York, pp 453–458

  28. Milhouse OE (1981) The Golgi methods. In: Heimer L, Robards M(eds) Neuroanatomical tract-tracing methods. Plenum Press, New York, pp 314–344

  29. Nakamura S, Akiguchi I, Kameyama M, Mizuno N (1985) Age-related changes of pyramidal cell basal dendrites in layers III and V of human motor cortex: a quantitative Golgi study. Acta Neuropathol 65:281–284

  30. Peters A, Jones EG (1984) Cerebral cortex, vol 1. Plenum Press, New York London

  31. Peters A, Kara DA, Harriman KM (1985) The neuronal composition of area 17 of rat visual cortex. III. Numerical consideration. J Comp Neurol 238:263–274

  32. Poliakov GI, Zhukova GP (1954) Die strukturelle Organization des menschlichen Kortex auf Grund ontogenetischer Daten. In: Zytoarchitektonik der Großhirnrinde des Menschen. Moskau, 1949

  33. Rall W (1967) Distinguishing theoretical synaptic potential computed for different soma-dendritic distribution of synaptic input. J Neurophysiol 30:1138–1168

  34. Ramón y Cajal S(1909) Histologie du système nerveux de l'homme et des Vertébrés. Maloine, Paris

  35. Rockel AJ, Hiorns RW, Powell TPS (1980) The basic uniformity in structure of the neocortex. Brain 103:221–244

  36. Ruiz-Marcos A, Valverde F (1970) Dynamic architecture of the visual cortex. Brain Res 19:25–39

  37. Sanides F (1962) Die Architektonik des menschlichen Stirnhirns. In: Müller M, Spatz H, Vogel P (eds) Monographien aus dem Gesamtgebiet der Neurologie und Psychiatrie, vol 98. Springer, Berlin Göttingen Heidelberg

  38. Schadé JP, Baxter CF (1960) Changes during growth in the volume and surface area of cortical neurons in the rabbit. Exp Neurol 2:158–178

  39. Schadé JP, Groeningen WB van (1961) Structural organization of the human cerebral cortex. Acta Anat 47:74–111

  40. Scheibel ME, Scheibel AB (1978) The dendritic structure of the human Betz cell. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex. Raven Press, New York

  41. Schlaug G, Armstrong E, Schleicher A, Zilles K (1987) Quantitative aspects of the human cingulate cortex using a computer controlled image analyzer. Soc Neurosci Abstr 13:247–249

  42. Schleicher A, Zilles K, Wree A (1986) A quantitative approach to cytoarchitectonics: software and hardware aspects of a system for the evaluation and analysis of structural inhomogeneities in nervous tissue. J Neurosci Methods 18:221–235

  43. Schönheit B, Schulz E (1976) Quantitative Untersuchungen über die Dendriten-Spines an den Lamina V-Pyramidenzellen im Bereich der vorderen'zingulären Rinde der Ratte. J Hirnforsch 17:171–187

  44. Schulz E, Schönheit B, Holz L (1976) Quantitative Untersuchungen am Dendritenbaum von großen (regulären) Pyramidenzellen der Lamina V im Bereich der vorderen cingulären Rinde der Ratte. J Hirnforsch 17:155–168

  45. Schulz E, Patzwaldt A, Rudolf A (1987) Quantitative und verglei-chende Untersuchungen an Lamina V-Pyramidenneuronen der Regio retrosplenialis granularis der Ratte. J Hirnforsch 28:357–373

  46. Seldon HL (1981a) Structure of human auditory cortex. I. Cytoar-chitectonics and dendritic distributions. Brain Res 229:277–294

  47. Seldon HL (1981b) Structure of human auditory cortex. II. Axon distributions and morphological correlates of speech perception. Brain Res 229:295–310

  48. Sholl DA (1953) Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat 87:387–406

  49. Sholl DA (1955) The surface area of cortical neurons. J Anat 89:571–572

  50. Sholl DA (1956) The organization of the cerebral cortex. Methuen, London

  51. Smit GJ, Uylings HBM (1975) The morphometry of the branching pattern in dendrites of the visual cortex pyramidal cells. Brain Res 87:41–53

  52. Stephan H (1964) Die kortikalen Anteile des limbischen Systems (Morphologie und Entwicklung) Nervenarzt 35:396–401

  53. Stephan H (1975) Allocortex. In: Bargmann W (ed) Handbuch der mikroskopischen Anatomie des Menschen, vol IV/9. Springer, Berlin Heidelberg New York, pp 1–998

  54. Strahler AN 61952 Hypsometrie analysis of erosional topography. Bull Geol Soc Am 63:1117–1142

  55. Uylings HBM, Smit GJ, Veltman WAM (1975) Ordering methods in quantitative analysis of branching structure of dendritic trees. In: Kreutzberg GW (ed) Physiology and dendrites, advances in neurology, vol 12. Raven Press, New York, pp 247–254

  56. Uylings HBM, Eden CG van, Verwer RWH (1984) Morphometric methods in sexual dimorphism research on the central nervous system. Prog Brain Res 61:215–222

  57. Uylings HBM, Ruiz-Marcos A, Pelt J van (1986) The metric analysis of three-dimensional dendritic tree pattern: a methodological review. J Neurosci Methods 18:127–151

  58. Verwer RWH, Pelt J van (1986) Descriptive and comparative analysis of geometrical properties of neuronal tree structures. J Neurosci Methods 18:179–206

  59. Vogt BA (1976) Retrosplenial cortex in the rhesus monkey: a cytoarchitectonic and Golgi study. J Comp Neurol 219:143–181

  60. Vogt BA (1985) Cingulate cortex. In: Peters A, Jones EG (eds) Cerebral Cortex, vol 4. Plenum Press, New York, pp 89–149

  61. Vogt BA, Rosene DL, Pandya DN (1979) Thalamic and cortical afferents differentiate anterior from posterior cingulate cortex in the monkey. Science 204:205–207

  62. Williams RS, Ferrante RJ, Caviness W (1978) The Golgi rapid method in clinical neuropathology: the morphologic consequences of suboptimal fixation. J Neuropathol Exp Neurol 37:13–33

  63. Wree A, Zilles K, Schleicher A (1980) Analyse der laminaeren Struktur der Area striata mit verschiedenen stereologischen Messmethoden. Verh Anat Ges 74:727–728

  64. Zilles K (1990) Cortex. In: Paxinos G (ed) The human nervous System. Academic Press, San Diego, pp 757–802

  65. Zilles K, Schleicher A (1980) Quantitative Analyse der laminaeren Struktur menschlicher Cortexareale. Verh Anat Ges 74:725–726

  66. Zilles K, Armstrong E, Schlaug G, Schleicher K (1986) Quantitative cytoarchitectonics of the posterior cingulate cortex in primates. J Comp Neurol 253:514–524

  67. Zhukova GP (1953) Zur Frage der Entwicklung der Rindenendigungen des motorischen Analysators. Arch Anat 30:32–38

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Schlaug, G., Armstrong, E., Schleicher, A. et al. Layer V pyramidal cells in the adult human cingulate cortex. Anat Embryol 187, 515–522 (1993). https://doi.org/10.1007/BF00214429

Download citation

Key words

  • Cingulate cortex
  • Morphometry
  • Image analysis
  • Dendritic arborization
  • Architecture